IDNLearn.com: Your go-to resource for finding precise and accurate answers. Our community is ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To solve this problem, we need to find the individual forces exerted on charge [tex]\( q_3 \)[/tex] by charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex], and then compute the net force on [tex]\( q_3 \)[/tex]. Here are the given values:
- Charge [tex]\( q_1 = 2.0 \times 10^{-6} \)[/tex] C
- Charge [tex]\( q_2 = -3.0 \times 10^{-6} \)[/tex] C
- Charge [tex]\( q_3 = 1.21 \times 10^{-6} \)[/tex] C
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{13} = 0.05 \)[/tex] m
- Distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{23} = 0.03 \)[/tex] m
Coulomb's constant: [tex]\( k = 8.99 \times 10^9 \)[/tex] N m[tex]\(^2\)[/tex] C[tex]\(^{-2}\)[/tex]
### Step-by-Step Solution
1. Calculate the force [tex]\( \vec{F}_1 \)[/tex] exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex]:
The formula for the electrostatic force [tex]\( F \)[/tex] is given by Coulomb’s law:
[tex]\[ F = k \frac{|q_1 q_3|}{r_{13}^2} \][/tex]
Plugging in the values:
[tex]\[ F_1 = 8.99 \times 10^9 \frac{(2.0 \times 10^{-6} \times 1.21 \times 10^{-6})}{(0.05)^2} \][/tex]
By computing this value, we get:
[tex]\[ F_1 = 8.702319999999999 \text{ N} \][/tex]
Since both charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] are positive, the force [tex]\( F_1 \)[/tex] is repulsive and directed to the right, so [tex]\( \vec{F}_1 \)[/tex] is positive.
2. Calculate the force [tex]\( \vec{F}_2 \)[/tex] exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex]:
Again, using Coulomb’s law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r_{23}^2} \][/tex]
Plugging in the values:
[tex]\[ F_2 = 8.99 \times 10^9 \frac{(3.0 \times 10^{-6} \times 1.21 \times 10^{-6})}{(0.03)^2} \][/tex]
By computing this value, we get:
[tex]\[ F_2 = 36.25966666666666 \text{ N} \][/tex]
Since [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force [tex]\( F_2 \)[/tex] is attractive and hence also directed to the right, so [tex]\( \vec{F}_2 \)[/tex] is positive.
3. Calculate the net force [tex]\( \vec{F} \)[/tex] on [tex]\( q_3 \)[/tex]:
The net force is the sum of the individual forces [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex]:
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
Substituting the values:
[tex]\[ F_{\text{net}} = 8.702319999999999 \text{ N} + 36.25966666666666 \text{ N} \][/tex]
By adding these values, we get:
[tex]\[ F_{\text{net}} = 44.96198666666666 \text{ N} \][/tex]
Therefore, the net force [tex]\( \vec{F} \)[/tex] on [tex]\( q_3 \)[/tex] is [tex]\( 44.96198666666666 \)[/tex] N directed to the right.
In summary:
[tex]\[ \vec{F}_1 = 8.702319999999999 \text{ N} \quad \text{(to the right)} \][/tex]
[tex]\[ \vec{F}_2 = 36.25966666666666 \text{ N} \quad \text{(to the right)} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = 44.96198666666666 \text{ N} \quad \text{(to the right)} \][/tex]
- Charge [tex]\( q_1 = 2.0 \times 10^{-6} \)[/tex] C
- Charge [tex]\( q_2 = -3.0 \times 10^{-6} \)[/tex] C
- Charge [tex]\( q_3 = 1.21 \times 10^{-6} \)[/tex] C
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{13} = 0.05 \)[/tex] m
- Distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{23} = 0.03 \)[/tex] m
Coulomb's constant: [tex]\( k = 8.99 \times 10^9 \)[/tex] N m[tex]\(^2\)[/tex] C[tex]\(^{-2}\)[/tex]
### Step-by-Step Solution
1. Calculate the force [tex]\( \vec{F}_1 \)[/tex] exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex]:
The formula for the electrostatic force [tex]\( F \)[/tex] is given by Coulomb’s law:
[tex]\[ F = k \frac{|q_1 q_3|}{r_{13}^2} \][/tex]
Plugging in the values:
[tex]\[ F_1 = 8.99 \times 10^9 \frac{(2.0 \times 10^{-6} \times 1.21 \times 10^{-6})}{(0.05)^2} \][/tex]
By computing this value, we get:
[tex]\[ F_1 = 8.702319999999999 \text{ N} \][/tex]
Since both charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] are positive, the force [tex]\( F_1 \)[/tex] is repulsive and directed to the right, so [tex]\( \vec{F}_1 \)[/tex] is positive.
2. Calculate the force [tex]\( \vec{F}_2 \)[/tex] exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex]:
Again, using Coulomb’s law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r_{23}^2} \][/tex]
Plugging in the values:
[tex]\[ F_2 = 8.99 \times 10^9 \frac{(3.0 \times 10^{-6} \times 1.21 \times 10^{-6})}{(0.03)^2} \][/tex]
By computing this value, we get:
[tex]\[ F_2 = 36.25966666666666 \text{ N} \][/tex]
Since [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force [tex]\( F_2 \)[/tex] is attractive and hence also directed to the right, so [tex]\( \vec{F}_2 \)[/tex] is positive.
3. Calculate the net force [tex]\( \vec{F} \)[/tex] on [tex]\( q_3 \)[/tex]:
The net force is the sum of the individual forces [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex]:
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
Substituting the values:
[tex]\[ F_{\text{net}} = 8.702319999999999 \text{ N} + 36.25966666666666 \text{ N} \][/tex]
By adding these values, we get:
[tex]\[ F_{\text{net}} = 44.96198666666666 \text{ N} \][/tex]
Therefore, the net force [tex]\( \vec{F} \)[/tex] on [tex]\( q_3 \)[/tex] is [tex]\( 44.96198666666666 \)[/tex] N directed to the right.
In summary:
[tex]\[ \vec{F}_1 = 8.702319999999999 \text{ N} \quad \text{(to the right)} \][/tex]
[tex]\[ \vec{F}_2 = 36.25966666666666 \text{ N} \quad \text{(to the right)} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = 44.96198666666666 \text{ N} \quad \text{(to the right)} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.