Get detailed and reliable answers to your questions with IDNLearn.com. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Sure! Let's break down the problem step-by-step:
1. Initial Information:
- Initial velocity [tex]\((v_i)\)[/tex]: [tex]\(72 \, \text{Hm/s}\)[/tex]
- Time to stop [tex]\((t)\)[/tex]: [tex]\(2 \, \text{seconds}\)[/tex]
- Mass of the truck [tex]\((m)\)[/tex]: [tex]\(5000 \, \text{kg}\)[/tex] (assuming the unit Hm is a typo).
2. Convert velocity from Hm/s to m/s:
- [tex]\(72 \, \text{Hm/s} = 72 \times 100 \, \text{m/s} = 7200 \, \text{m/s}\)[/tex]
3. Calculate the acceleration [tex]\((a)\)[/tex]:
- The truck comes to a stop, so the final velocity [tex]\((v_f)\)[/tex] is [tex]\(0 \, \text{m/s}\)[/tex].
- Using the formula [tex]\(v_f = v_i + at\)[/tex], rearrange to solve for [tex]\(a\)[/tex]:
[tex]\[ 0 = 7200 + a \times 2 \][/tex]
[tex]\[ a = -\frac{7200}{2} = -3600 \, \text{m/s}^2 \][/tex]
- The acceleration is negative because the truck is decelerating.
4. Calculate the distance covered while stopping:
- Using the kinematic equation:
[tex]\(\text{distance} = v_i \times t + \frac{1}{2} a \times t^2\)[/tex]
[tex]\[ \text{distance} = 7200 \times 2 + \frac{1}{2} \times (-3600) \times 2^2 \][/tex]
[tex]\[ \text{distance} = 14400 - 7200 = 7200 \, \text{m} \][/tex]
5. Calculate the force applied by the brakes:
- Using Newton's second law [tex]\(F = m \times a\)[/tex]:
[tex]\[ F = 5000 \times (-3600) \][/tex]
[tex]\[ F = -18000000 \, \text{N} \][/tex]
- The negative sign indicates that the force applied by the brakes is in the opposite direction of the truck's motion.
6. Summary of Results:
- Initial velocity in m/s: [tex]\(7200 \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(-3600 \, \text{m/s}^2\)[/tex]
- Distance covered: [tex]\(7200 \, \text{m}\)[/tex]
- Force applied by the brakes: [tex]\(-18000000 \, \text{N}\)[/tex]
Thus, the values calculated are:
- The initial velocity is [tex]\(7200 \, \text{m/s}\)[/tex].
- The acceleration is [tex]\(-3600 \, \text{m/s}^2\)[/tex].
- The distance covered while stopping is [tex]\(7200 \, \text{m}\)[/tex].
- The force applied by the brakes is [tex]\(-18000000 \, \text{N}\)[/tex].
1. Initial Information:
- Initial velocity [tex]\((v_i)\)[/tex]: [tex]\(72 \, \text{Hm/s}\)[/tex]
- Time to stop [tex]\((t)\)[/tex]: [tex]\(2 \, \text{seconds}\)[/tex]
- Mass of the truck [tex]\((m)\)[/tex]: [tex]\(5000 \, \text{kg}\)[/tex] (assuming the unit Hm is a typo).
2. Convert velocity from Hm/s to m/s:
- [tex]\(72 \, \text{Hm/s} = 72 \times 100 \, \text{m/s} = 7200 \, \text{m/s}\)[/tex]
3. Calculate the acceleration [tex]\((a)\)[/tex]:
- The truck comes to a stop, so the final velocity [tex]\((v_f)\)[/tex] is [tex]\(0 \, \text{m/s}\)[/tex].
- Using the formula [tex]\(v_f = v_i + at\)[/tex], rearrange to solve for [tex]\(a\)[/tex]:
[tex]\[ 0 = 7200 + a \times 2 \][/tex]
[tex]\[ a = -\frac{7200}{2} = -3600 \, \text{m/s}^2 \][/tex]
- The acceleration is negative because the truck is decelerating.
4. Calculate the distance covered while stopping:
- Using the kinematic equation:
[tex]\(\text{distance} = v_i \times t + \frac{1}{2} a \times t^2\)[/tex]
[tex]\[ \text{distance} = 7200 \times 2 + \frac{1}{2} \times (-3600) \times 2^2 \][/tex]
[tex]\[ \text{distance} = 14400 - 7200 = 7200 \, \text{m} \][/tex]
5. Calculate the force applied by the brakes:
- Using Newton's second law [tex]\(F = m \times a\)[/tex]:
[tex]\[ F = 5000 \times (-3600) \][/tex]
[tex]\[ F = -18000000 \, \text{N} \][/tex]
- The negative sign indicates that the force applied by the brakes is in the opposite direction of the truck's motion.
6. Summary of Results:
- Initial velocity in m/s: [tex]\(7200 \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(-3600 \, \text{m/s}^2\)[/tex]
- Distance covered: [tex]\(7200 \, \text{m}\)[/tex]
- Force applied by the brakes: [tex]\(-18000000 \, \text{N}\)[/tex]
Thus, the values calculated are:
- The initial velocity is [tex]\(7200 \, \text{m/s}\)[/tex].
- The acceleration is [tex]\(-3600 \, \text{m/s}^2\)[/tex].
- The distance covered while stopping is [tex]\(7200 \, \text{m}\)[/tex].
- The force applied by the brakes is [tex]\(-18000000 \, \text{N}\)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.