Connect with experts and get insightful answers on IDNLearn.com. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Let's start by calculating the average velocities over each of the given time intervals for the position function [tex]\(s(t) = -16 t^2 + 114 t\)[/tex].
For each time interval [tex]\([t_1, t_2]\)[/tex], the average velocity is given by:
[tex]\[ \text{Average Velocity} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
### Interval: [tex]\([1, 2]\)[/tex]
1. [tex]\(s(2) = -16(2)^2 + 114(2) = -64 + 228 = 164\)[/tex]
2. [tex]\(s(1) = -16(1)^2 + 114(1) = -16 + 114 = 98\)[/tex]
[tex]\[ \text{Average Velocity} = \frac{164 - 98}{2 - 1} = \frac{66}{1} = 66 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.5]\)[/tex]
1. [tex]\(s(1.5) = -16(1.5)^2 + 114(1.5) = -36 + 171 = 135\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{135 - 98}{1.5 - 1} = \frac{37}{0.5} = 74 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.1]\)[/tex]
1. [tex]\(s(1.1) = -16(1.1)^2 + 114(1.1) = -16(1.21) + 125.4 = -19.36 + 125.4 = 106.04\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{106.04 - 98}{1.1 - 1} = \frac{8.04}{0.1} = 80.4 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.01]\)[/tex]
1. [tex]\(s(1.01) = -16(1.01)^2 + 114(1.01) = -16(1.0201) + 115.14 = -16.3216 + 115.14 = 98.8184\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{98.8184 - 98}{1.01 - 1} = \frac{0.8184}{0.01} = 81.84 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.001]\)[/tex]
1. [tex]\(s(1.001) = -16(1.001)^2 + 114(1.001) = -16(1.002001) + 114.114 = -16.032016 + 114.114 = 98.081984\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{98.081984 - 98}{1.001 - 1} = \frac{0.081984}{0.001} = 81.984 \text{ ft/s} \][/tex]
Now we'll construct the table with the calculated values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Time Interval} & [1, 2] & [1, 1.5] & [1, 1.1] & [1, 1.01] & [1, 1.001] \\ \hline \text{Average Velocity} & 66 \text{ ft/s} & 74 \text{ ft/s} & 80.4 \text{ ft/s} & 81.84 \text{ ft/s} & 81.984 \text{ ft/s} \\ \hline \end{array} \][/tex]
To make a conjecture about the instantaneous velocity at [tex]\(t = 1\)[/tex], we observe how the average velocity gets closer to a specific value as the interval gets smaller. As the values approach, they seem to converge to approximately 82 ft/s.
Thus, the instantaneous velocity at [tex]\(t = 1\)[/tex] can be conjectured to be:
[tex]\[ \text{Instantaneous Velocity} = 82 \text{ ft/s} \][/tex]
For each time interval [tex]\([t_1, t_2]\)[/tex], the average velocity is given by:
[tex]\[ \text{Average Velocity} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
### Interval: [tex]\([1, 2]\)[/tex]
1. [tex]\(s(2) = -16(2)^2 + 114(2) = -64 + 228 = 164\)[/tex]
2. [tex]\(s(1) = -16(1)^2 + 114(1) = -16 + 114 = 98\)[/tex]
[tex]\[ \text{Average Velocity} = \frac{164 - 98}{2 - 1} = \frac{66}{1} = 66 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.5]\)[/tex]
1. [tex]\(s(1.5) = -16(1.5)^2 + 114(1.5) = -36 + 171 = 135\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{135 - 98}{1.5 - 1} = \frac{37}{0.5} = 74 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.1]\)[/tex]
1. [tex]\(s(1.1) = -16(1.1)^2 + 114(1.1) = -16(1.21) + 125.4 = -19.36 + 125.4 = 106.04\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{106.04 - 98}{1.1 - 1} = \frac{8.04}{0.1} = 80.4 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.01]\)[/tex]
1. [tex]\(s(1.01) = -16(1.01)^2 + 114(1.01) = -16(1.0201) + 115.14 = -16.3216 + 115.14 = 98.8184\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{98.8184 - 98}{1.01 - 1} = \frac{0.8184}{0.01} = 81.84 \text{ ft/s} \][/tex]
### Interval: [tex]\([1, 1.001]\)[/tex]
1. [tex]\(s(1.001) = -16(1.001)^2 + 114(1.001) = -16(1.002001) + 114.114 = -16.032016 + 114.114 = 98.081984\)[/tex]
2. [tex]\(s(1) = 98\)[/tex] (as calculated before)
[tex]\[ \text{Average Velocity} = \frac{98.081984 - 98}{1.001 - 1} = \frac{0.081984}{0.001} = 81.984 \text{ ft/s} \][/tex]
Now we'll construct the table with the calculated values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Time Interval} & [1, 2] & [1, 1.5] & [1, 1.1] & [1, 1.01] & [1, 1.001] \\ \hline \text{Average Velocity} & 66 \text{ ft/s} & 74 \text{ ft/s} & 80.4 \text{ ft/s} & 81.84 \text{ ft/s} & 81.984 \text{ ft/s} \\ \hline \end{array} \][/tex]
To make a conjecture about the instantaneous velocity at [tex]\(t = 1\)[/tex], we observe how the average velocity gets closer to a specific value as the interval gets smaller. As the values approach, they seem to converge to approximately 82 ft/s.
Thus, the instantaneous velocity at [tex]\(t = 1\)[/tex] can be conjectured to be:
[tex]\[ \text{Instantaneous Velocity} = 82 \text{ ft/s} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.