Get the most out of your questions with the extensive resources available on IDNLearn.com. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.

Consider the position function [tex]s(t) = 8 \sin(3t)[/tex] that describes a block bouncing vertically on a spring. Complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at [tex]t=\frac{\pi}{2}[/tex].

\begin{tabular}{|c|c|c|c|c|}
\hline
\begin{tabular}{c}
Time \\
Interval
\end{tabular}
& [tex]\left[\frac{\pi}{2}, \pi\right][/tex]
& [tex]\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right][/tex]
& [tex]\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right][/tex]
& [tex]\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right][/tex]
& [tex]\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right][/tex] \\
\hline
\begin{tabular}{l}
Average \\
Velocity
\end{tabular}
& & & & & \\
\hline
\end{tabular}


Sagot :

Let's consider the position function [tex]\( s(t) = 8 \sin(3t) \)[/tex], which describes a block bouncing vertically on a spring.

To find the average velocity over a given time interval [tex]\([t_0, t_1]\)[/tex], we use the formula:
[tex]\[ \text{Average Velocity} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} \][/tex]

We need to calculate the average velocities over various time intervals and fill in the table. Let's list the intervals and then their corresponding average velocities.

The time intervals are:

1. [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]
2. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]
3. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]
4. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]
5. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]

Using the given position function [tex]\( s(t) \)[/tex], let's calculate the average velocities for each interval:
- For the interval [tex]\( \left[\frac{\pi}{2}, \pi\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 5.092958178940653 \][/tex]

- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 3.5730808699515273 \][/tex]

- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.3599730008099652 \][/tex]

- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.03599997299997112 \][/tex]

- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.0035999999692397167 \][/tex]

We can now fill in the table with these results.

[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time \\ Interval \end{tabular} & \begin{tabular}{c} Average \\ Velocity \end{tabular} \\ \hline \(\left[\frac{\pi}{2}, \pi\right]\) & 5.092958178940653 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\) & 3.5730808699515273 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\) & 0.3599730008099652 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\) & 0.03599997299997112 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\) & 0.0035999999692397167 \\ \hline \end{tabular} \][/tex]

From the table, we observe that as the interval gets smaller and smaller, the average velocity approaches zero. Hence, we can make the conjecture that the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex] is approximately zero. This result is confirmed by the smallest average velocities in the list above, suggesting the instantaneous velocity value is [tex]\(-4.408728476930472 \times 10^{-15}\)[/tex], which is extremely close to zero.