IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
Certainly! Let's break down the problem and find the required values step-by-step.
Given the position function:
[tex]\[ s(t) = 8 \sin (5t) \][/tex]
We're asked to find the average velocities over specific intervals and then make a conjecture about the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex].
1. Average Velocities
The average velocity over the interval [tex]\([t_1, t_2]\)[/tex] can be calculated using the difference quotient:
[tex]\[ v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Now, let's compute this for each given interval.
- Interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
- [tex]\( t_1 = \frac{\pi}{2} \)[/tex]
- [tex]\( t_2 = \pi \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \sin \left(5 \cdot \frac{\pi}{2}\right) = 8 \sin \left(\frac{5\pi}{2}\right) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \cdot \pi\right) = 8 \sin (5\pi) = -8 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-8 - 8}{\pi - \frac{\pi}{2}} = \frac{-16}{\frac{\pi}{2}} = \frac{-16 \cdot 2}{\pi} = -\frac{32}{\pi} \approx -10.1859 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.1 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.1\right)\right) \approx -0.792584 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.792584 - 8}{0.1} = -5.092958 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.01 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.01\right)\right) \approx -0.079933 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.079933 - 8}{0.01} = -0.999791 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.001\right)\right) \approx -0.007999986 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.007999986 - 8}{0.001} = -0.0999998 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.0001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.0001\right)\right) \approx -0.0007999998 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.0007999998 - 8}{0.0001} = -0.0099999998 \][/tex]
2. Instantaneous Velocity at [tex]\( t = \frac{\pi}{2} \)[/tex]:
The instantaneous velocity is found by taking the derivative of [tex]\(s(t)\)[/tex] and evaluating it at [tex]\( t = \frac{\pi}{2} \)[/tex].
[tex]\[ v(t) = \frac{ds}{dt} = 40 \cos (5t) \][/tex]
At [tex]\( t = \frac{\pi}{2} \)[/tex]:
[tex]\[ v\left(\frac{\pi}{2}\right) = 40 \cos \left(5 \cdot \frac{\pi}{2}\right) = 40 \cos \left(\frac{5\pi}{2}\right) = 40 \cdot 0 = 0 \][/tex]
However, we note that [tex]\(40 \cos \left(\frac{5\pi}{2}\right) \approx 1.2246467991473532 \times 10^{-14}\)[/tex], which is very close to zero (practically zero).
Summary:
Here's the completed table with the average velocities and conjecture on instantaneous velocity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Time \ Interval & \left[\frac{\pi}{2}, \pi\right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001 \right] \\ \hline Average \ Velocity & -10.1859 & -5.092958 & -0.999791 & -0.0999998 & -0.0099999998 \\ \hline \end{array} \][/tex]
Conjecture about the instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex]:
The instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex] is approximately [tex]\( 1.2246467991473532 \times 10^{-14} \text{ or practically } 0 \)[/tex].
Given the position function:
[tex]\[ s(t) = 8 \sin (5t) \][/tex]
We're asked to find the average velocities over specific intervals and then make a conjecture about the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex].
1. Average Velocities
The average velocity over the interval [tex]\([t_1, t_2]\)[/tex] can be calculated using the difference quotient:
[tex]\[ v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Now, let's compute this for each given interval.
- Interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
- [tex]\( t_1 = \frac{\pi}{2} \)[/tex]
- [tex]\( t_2 = \pi \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \sin \left(5 \cdot \frac{\pi}{2}\right) = 8 \sin \left(\frac{5\pi}{2}\right) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \cdot \pi\right) = 8 \sin (5\pi) = -8 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-8 - 8}{\pi - \frac{\pi}{2}} = \frac{-16}{\frac{\pi}{2}} = \frac{-16 \cdot 2}{\pi} = -\frac{32}{\pi} \approx -10.1859 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.1 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.1\right)\right) \approx -0.792584 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.792584 - 8}{0.1} = -5.092958 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.01 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.01\right)\right) \approx -0.079933 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.079933 - 8}{0.01} = -0.999791 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.001\right)\right) \approx -0.007999986 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.007999986 - 8}{0.001} = -0.0999998 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.0001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.0001\right)\right) \approx -0.0007999998 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.0007999998 - 8}{0.0001} = -0.0099999998 \][/tex]
2. Instantaneous Velocity at [tex]\( t = \frac{\pi}{2} \)[/tex]:
The instantaneous velocity is found by taking the derivative of [tex]\(s(t)\)[/tex] and evaluating it at [tex]\( t = \frac{\pi}{2} \)[/tex].
[tex]\[ v(t) = \frac{ds}{dt} = 40 \cos (5t) \][/tex]
At [tex]\( t = \frac{\pi}{2} \)[/tex]:
[tex]\[ v\left(\frac{\pi}{2}\right) = 40 \cos \left(5 \cdot \frac{\pi}{2}\right) = 40 \cos \left(\frac{5\pi}{2}\right) = 40 \cdot 0 = 0 \][/tex]
However, we note that [tex]\(40 \cos \left(\frac{5\pi}{2}\right) \approx 1.2246467991473532 \times 10^{-14}\)[/tex], which is very close to zero (practically zero).
Summary:
Here's the completed table with the average velocities and conjecture on instantaneous velocity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Time \ Interval & \left[\frac{\pi}{2}, \pi\right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001 \right] \\ \hline Average \ Velocity & -10.1859 & -5.092958 & -0.999791 & -0.0999998 & -0.0099999998 \\ \hline \end{array} \][/tex]
Conjecture about the instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex]:
The instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex] is approximately [tex]\( 1.2246467991473532 \times 10^{-14} \text{ or practically } 0 \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.