IDNLearn.com offers expert insights and community wisdom to answer your queries. Ask anything and receive well-informed answers from our community of experienced professionals.
Sagot :
First, let's introduce the concept of the correlation coefficient. The correlation coefficient, often denoted as [tex]\( r \)[/tex], measures the strength and direction of a linear relationship between two variables. Its value ranges from [tex]\(-1\)[/tex] to [tex]\(1\)[/tex], where:
- [tex]\(1\)[/tex] indicates a perfect positive linear relationship.
- [tex]\(-1\)[/tex] indicates a perfect negative linear relationship.
- [tex]\(0\)[/tex] indicates no linear relationship.
Given the table of data, we have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 15 \\ \hline 5 & 10 \\ \hline 10 & 5 \\ \hline 15 & 0 \\ \hline \end{array} \][/tex]
To determine the correlation coefficient [tex]\( r \)[/tex], follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- The mean of [tex]\( x \)[/tex] ([tex]\( \bar{x} \)[/tex]) = [tex]\(\frac{0 + 5 + 10 + 15}{4} = 7.5\)[/tex]
- The mean of [tex]\( y \)[/tex] ([tex]\( \bar{y} \)[/tex]) = [tex]\(\frac{15 + 10 + 5 + 0}{4} = 7.5\)[/tex]
2. Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Covariance formula: [tex]\[ \text{Cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
3. Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Standard deviation formula: [tex]\[ \sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \][/tex]
- [tex]\[ \sigma_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2} \][/tex]
4. Compute the correlation coefficient.
- Correlation coefficient formula: [tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
After performing these calculations with the given data, we find that the correlation coefficient is:
[tex]\[ r = -1.0 \][/tex]
This indicates a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Hence, the correct answer for the correlation coefficient for the data shown in the table is:
[tex]\[ -1 \][/tex]
- [tex]\(1\)[/tex] indicates a perfect positive linear relationship.
- [tex]\(-1\)[/tex] indicates a perfect negative linear relationship.
- [tex]\(0\)[/tex] indicates no linear relationship.
Given the table of data, we have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 15 \\ \hline 5 & 10 \\ \hline 10 & 5 \\ \hline 15 & 0 \\ \hline \end{array} \][/tex]
To determine the correlation coefficient [tex]\( r \)[/tex], follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- The mean of [tex]\( x \)[/tex] ([tex]\( \bar{x} \)[/tex]) = [tex]\(\frac{0 + 5 + 10 + 15}{4} = 7.5\)[/tex]
- The mean of [tex]\( y \)[/tex] ([tex]\( \bar{y} \)[/tex]) = [tex]\(\frac{15 + 10 + 5 + 0}{4} = 7.5\)[/tex]
2. Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Covariance formula: [tex]\[ \text{Cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
3. Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Standard deviation formula: [tex]\[ \sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \][/tex]
- [tex]\[ \sigma_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2} \][/tex]
4. Compute the correlation coefficient.
- Correlation coefficient formula: [tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
After performing these calculations with the given data, we find that the correlation coefficient is:
[tex]\[ r = -1.0 \][/tex]
This indicates a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Hence, the correct answer for the correlation coefficient for the data shown in the table is:
[tex]\[ -1 \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.