IDNLearn.com: Where questions are met with accurate and insightful answers. Ask anything and receive well-informed answers from our community of experienced professionals.
Sagot :
To find the specific heat capacity ([tex]\(C_p\)[/tex]) of copper using the given data, we can use the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\(q\)[/tex] is the heat added,
- [tex]\(m\)[/tex] is the mass of the substance,
- [tex]\(C_p\)[/tex] is the specific heat capacity,
- [tex]\(\Delta T\)[/tex] is the change in temperature.
We are given:
- Heat added ([tex]\(q\)[/tex]) = 4200.0 Joules,
- The mass of the copper rod ([tex]\(m\)[/tex]) = 200.0 grams,
- Initial temperature = [tex]\(20.0^{\circ} C\)[/tex],
- Final temperature = [tex]\(75.0^{\circ} C\)[/tex].
First, we need to calculate the change in temperature ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = \text{Final temperature} - \text{Initial temperature} \][/tex]
[tex]\[ \Delta T = 75.0^{\circ} C - 20.0^{\circ} C \][/tex]
[tex]\[ \Delta T = 55.0^{\circ} C \][/tex]
Next, we rearrange the formula to solve for the specific heat capacity ([tex]\(C_p\)[/tex]):
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
Substitute the given values into the equation:
[tex]\[ C_p = \frac{4200.0 \text{ Joules}}{200.0 \text{ grams} \times 55.0^{\circ} C} \][/tex]
[tex]\[ C_p = \frac{4200.0}{11000.0} \text{ J/(g}\cdot^\circ\text{C)} \][/tex]
[tex]\[ C_p \approx 0.38181818181818183 \text{ J/(g}\cdot^\circ\text{C)} \][/tex]
Thus, the specific heat capacity ([tex]\(C_p\)[/tex]) of copper is approximately [tex]\(0.385 \text{ J/(g}\cdot^\circ\text{C)}\)[/tex].
From the given multiple-choice options, the closest match to our calculated value is:
[tex]\[ \boxed{0.385 \text{ J/(g}\cdot^\circ\text{C)} } \][/tex]
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\(q\)[/tex] is the heat added,
- [tex]\(m\)[/tex] is the mass of the substance,
- [tex]\(C_p\)[/tex] is the specific heat capacity,
- [tex]\(\Delta T\)[/tex] is the change in temperature.
We are given:
- Heat added ([tex]\(q\)[/tex]) = 4200.0 Joules,
- The mass of the copper rod ([tex]\(m\)[/tex]) = 200.0 grams,
- Initial temperature = [tex]\(20.0^{\circ} C\)[/tex],
- Final temperature = [tex]\(75.0^{\circ} C\)[/tex].
First, we need to calculate the change in temperature ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = \text{Final temperature} - \text{Initial temperature} \][/tex]
[tex]\[ \Delta T = 75.0^{\circ} C - 20.0^{\circ} C \][/tex]
[tex]\[ \Delta T = 55.0^{\circ} C \][/tex]
Next, we rearrange the formula to solve for the specific heat capacity ([tex]\(C_p\)[/tex]):
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
Substitute the given values into the equation:
[tex]\[ C_p = \frac{4200.0 \text{ Joules}}{200.0 \text{ grams} \times 55.0^{\circ} C} \][/tex]
[tex]\[ C_p = \frac{4200.0}{11000.0} \text{ J/(g}\cdot^\circ\text{C)} \][/tex]
[tex]\[ C_p \approx 0.38181818181818183 \text{ J/(g}\cdot^\circ\text{C)} \][/tex]
Thus, the specific heat capacity ([tex]\(C_p\)[/tex]) of copper is approximately [tex]\(0.385 \text{ J/(g}\cdot^\circ\text{C)}\)[/tex].
From the given multiple-choice options, the closest match to our calculated value is:
[tex]\[ \boxed{0.385 \text{ J/(g}\cdot^\circ\text{C)} } \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.