IDNLearn.com is your go-to resource for finding answers to any question you have. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.
Sagot :
To differentiate the function [tex]\( f(x) = \tan^2(x) \)[/tex], follow these steps:
1. Rewrite the function in a more convenient form:
[tex]\[ f(x) = (\tan(x))^2 \][/tex]
2. Apply the chain rule:
The chain rule states that if you have a composite function [tex]\( (g(h(x))) \)[/tex], the derivative is:
[tex]\[ \frac{d}{dx}[g(h(x))] = g'(h(x)) \cdot h'(x) \][/tex]
For our function, [tex]\( g(u) = u^2 \)[/tex] and [tex]\( u = \tan(x) \)[/tex]. So we first need to find the derivatives of these components.
3. Differentiate the outer function [tex]\( g(u) = u^2 \)[/tex]:
The derivative of [tex]\( u^2 \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ g'(u) = 2u \][/tex]
4. Differentiate the inner function [tex]\( u = \tan(x) \)[/tex]:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan(x)] = \sec^2(x) \][/tex]
5. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = g'(u) \cdot \frac{d}{dx}[u] \][/tex]
Substitute [tex]\( g'(u) \)[/tex] and [tex]\( \frac{d}{dx}[u] \)[/tex]:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
6. Simplify the expression:
Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], so:
[tex]\[ \sec^2(x) = \frac{1}{\cos^2(x)} \][/tex]
Thus,
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
Since [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex], we can substitute this to get a more detailed expression:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot (1 + \tan^2(x)) \][/tex]
7. Final expression:
The derivative of [tex]\( \tan^2(x) \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) \][/tex]
Which can also be written as:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) = (2\tan(x)\tan^2(x) + 2\tan(x)) \][/tex]
Thus, the final derivative is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x)^2 + 2)\tan(x) \][/tex]
1. Rewrite the function in a more convenient form:
[tex]\[ f(x) = (\tan(x))^2 \][/tex]
2. Apply the chain rule:
The chain rule states that if you have a composite function [tex]\( (g(h(x))) \)[/tex], the derivative is:
[tex]\[ \frac{d}{dx}[g(h(x))] = g'(h(x)) \cdot h'(x) \][/tex]
For our function, [tex]\( g(u) = u^2 \)[/tex] and [tex]\( u = \tan(x) \)[/tex]. So we first need to find the derivatives of these components.
3. Differentiate the outer function [tex]\( g(u) = u^2 \)[/tex]:
The derivative of [tex]\( u^2 \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ g'(u) = 2u \][/tex]
4. Differentiate the inner function [tex]\( u = \tan(x) \)[/tex]:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan(x)] = \sec^2(x) \][/tex]
5. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = g'(u) \cdot \frac{d}{dx}[u] \][/tex]
Substitute [tex]\( g'(u) \)[/tex] and [tex]\( \frac{d}{dx}[u] \)[/tex]:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
6. Simplify the expression:
Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], so:
[tex]\[ \sec^2(x) = \frac{1}{\cos^2(x)} \][/tex]
Thus,
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
Since [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex], we can substitute this to get a more detailed expression:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot (1 + \tan^2(x)) \][/tex]
7. Final expression:
The derivative of [tex]\( \tan^2(x) \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) \][/tex]
Which can also be written as:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) = (2\tan(x)\tan^2(x) + 2\tan(x)) \][/tex]
Thus, the final derivative is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x)^2 + 2)\tan(x) \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.