Connect with experts and get insightful answers on IDNLearn.com. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
To find the final velocity of the two pieces of clay immediately after a perfectly inelastic collision, we need to use the principle of conservation of momentum. In a perfectly inelastic collision, the two objects stick together and move with the same final velocity after the collision.
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.