Get clear, concise, and accurate answers to your questions on IDNLearn.com. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.
Sagot :
Certainly! Let's break down the problem and solve it step-by-step to determine the number of Schottky defects per cubic meter in potassium chloride (KCl) at 500°C.
### Step 1: Given Values and Constants
- Energy per Schottky defect (Q): [tex]\(2.6 \, \text{eV}\)[/tex]
- Density of KCl at 500°C (ρ): [tex]\(1.955 \, \text{g/cm}^3\)[/tex]
- Temperature (T): [tex]\(500°C\)[/tex]
- Boltzmann constant (k_B): [tex]\(8.617333262 \times 10^{-5} \, \text{eV/K}\)[/tex]
- Avogadro's number (N_A): [tex]\(6.022 \times 10^{23} \, \text{mol}^{-1}\)[/tex]
- Molar mass of KCl (M): [tex]\(74.55 \, \text{g/mol}\)[/tex]
### Step 2: Converting Temperature to Kelvin
The temperature in Kelvin (T_K) can be calculated as:
[tex]\[ T_K = 500\, ^\circ\text{C} + 273.15 = 773.15 \, \text{K} \][/tex]
### Step 3: Convert Density to Proper Units
Convert the density from [tex]\( \text{g/cm}^3 \)[/tex] to [tex]\( \text{kg/m}^3 \)[/tex]:
[tex]\[ \rho_{\text{KCl}} = 1.955 \, \text{g/cm}^3 \times 1000 \, \text{kg/m}^3/\text{g/cm}^3 = 1955 \, \text{kg/m}^3 \][/tex]
### Step 4: Calculate the Molar Volume
The molar volume [tex]\(V_m\)[/tex] is the volume occupied by one mole of KCl:
[tex]\[ V_m = \frac{M}{\rho_{\text{KCl}}} \][/tex]
Substitute the values:
[tex]\[ V_m = \frac{74.55 \, \text{g/mol}}{1955 \, \text{g/L}} = \frac{74.55 \times 10^{-3} \, \text{kg/mol}}{1955 \times 10^{-3} \, \text{kg/L}} = \frac{74.55}{1955} \, \text{m}^3/\text{mol} \approx 0.03814 \, \text{m}^3/\text{mol} \][/tex]
### Step 5: Number of Formula Units per Cubic Meter
Calculate the total number of formula units (N_total) in one cubic meter:
[tex]\[ N_{\text{total}} = \frac{N_A}{V_m} = \frac{6.022 \times 10^{23} \, \text{mol}^{-1}}{0.03814 \, \text{m}^3/\text{mol}} \approx 1.5792 \times 10^{25} \, \text{units/m}^3 \][/tex]
### Step 6: Calculate the Number of Schottky Defects
Using the formula for the number of Schottky defects [tex]\( N_s \)[/tex]:
[tex]\[ N_s = N_{\text{total}} \times \exp \left( -\frac{Q}{2k_B T_K} \right) \][/tex]
Substitute the values:
[tex]\[ N_s = 1.5792 \times 10^{25} \times \exp \left( -\frac{2.6 \, \text{eV}}{2 \times 8.617333262 \times 10^{-5} \, \text{eV/K} \times 773.15 \, \text{K}} \right) \][/tex]
Simplifying the exponent:
[tex]\[ N_s \approx 5.3014 \times 10^{16} \][/tex]
### Final Answer
- Number of formula units per cubic meter [tex]\(N_{\text{total}}\)[/tex]: [tex]\(1.5792 \times 10^{25} \, \text{units/m}^3\)[/tex]
- Number of Schottky defects per cubic meter [tex]\(N_s\)[/tex]: [tex]\(5.3014 \times 10^{16} \, \text{defects/m}^3\)[/tex]
These values represent the density of atomic formula units and the density of Schottky defects in potassium chloride at 500°C respectively.
### Step 1: Given Values and Constants
- Energy per Schottky defect (Q): [tex]\(2.6 \, \text{eV}\)[/tex]
- Density of KCl at 500°C (ρ): [tex]\(1.955 \, \text{g/cm}^3\)[/tex]
- Temperature (T): [tex]\(500°C\)[/tex]
- Boltzmann constant (k_B): [tex]\(8.617333262 \times 10^{-5} \, \text{eV/K}\)[/tex]
- Avogadro's number (N_A): [tex]\(6.022 \times 10^{23} \, \text{mol}^{-1}\)[/tex]
- Molar mass of KCl (M): [tex]\(74.55 \, \text{g/mol}\)[/tex]
### Step 2: Converting Temperature to Kelvin
The temperature in Kelvin (T_K) can be calculated as:
[tex]\[ T_K = 500\, ^\circ\text{C} + 273.15 = 773.15 \, \text{K} \][/tex]
### Step 3: Convert Density to Proper Units
Convert the density from [tex]\( \text{g/cm}^3 \)[/tex] to [tex]\( \text{kg/m}^3 \)[/tex]:
[tex]\[ \rho_{\text{KCl}} = 1.955 \, \text{g/cm}^3 \times 1000 \, \text{kg/m}^3/\text{g/cm}^3 = 1955 \, \text{kg/m}^3 \][/tex]
### Step 4: Calculate the Molar Volume
The molar volume [tex]\(V_m\)[/tex] is the volume occupied by one mole of KCl:
[tex]\[ V_m = \frac{M}{\rho_{\text{KCl}}} \][/tex]
Substitute the values:
[tex]\[ V_m = \frac{74.55 \, \text{g/mol}}{1955 \, \text{g/L}} = \frac{74.55 \times 10^{-3} \, \text{kg/mol}}{1955 \times 10^{-3} \, \text{kg/L}} = \frac{74.55}{1955} \, \text{m}^3/\text{mol} \approx 0.03814 \, \text{m}^3/\text{mol} \][/tex]
### Step 5: Number of Formula Units per Cubic Meter
Calculate the total number of formula units (N_total) in one cubic meter:
[tex]\[ N_{\text{total}} = \frac{N_A}{V_m} = \frac{6.022 \times 10^{23} \, \text{mol}^{-1}}{0.03814 \, \text{m}^3/\text{mol}} \approx 1.5792 \times 10^{25} \, \text{units/m}^3 \][/tex]
### Step 6: Calculate the Number of Schottky Defects
Using the formula for the number of Schottky defects [tex]\( N_s \)[/tex]:
[tex]\[ N_s = N_{\text{total}} \times \exp \left( -\frac{Q}{2k_B T_K} \right) \][/tex]
Substitute the values:
[tex]\[ N_s = 1.5792 \times 10^{25} \times \exp \left( -\frac{2.6 \, \text{eV}}{2 \times 8.617333262 \times 10^{-5} \, \text{eV/K} \times 773.15 \, \text{K}} \right) \][/tex]
Simplifying the exponent:
[tex]\[ N_s \approx 5.3014 \times 10^{16} \][/tex]
### Final Answer
- Number of formula units per cubic meter [tex]\(N_{\text{total}}\)[/tex]: [tex]\(1.5792 \times 10^{25} \, \text{units/m}^3\)[/tex]
- Number of Schottky defects per cubic meter [tex]\(N_s\)[/tex]: [tex]\(5.3014 \times 10^{16} \, \text{defects/m}^3\)[/tex]
These values represent the density of atomic formula units and the density of Schottky defects in potassium chloride at 500°C respectively.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.