Get expert insights and reliable answers to your questions on IDNLearn.com. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
Sure, let's solve the given differential equation step-by-step to determine the largest value of [tex]\( k \)[/tex].
The differential equation given is:
[tex]\[ \frac{d^2 y}{dx^2} - 7 \frac{dy}{dx} + 6y = 0. \][/tex]
We will use the method of assuming a solution in the form:
[tex]\[ y = e^{kx}. \][/tex]
Then,
[tex]\[ \frac{dy}{dx} = ke^{kx} \][/tex]
and
[tex]\[ \frac{d^2 y}{dx^2} = k^2 e^{kx}. \][/tex]
Substitute [tex]\( y \)[/tex], [tex]\( \frac{dy}{dx} \)[/tex], and [tex]\( \frac{d^2 y}{dx^2} \)[/tex] into the differential equation:
[tex]\[ k^2 e^{kx} - 7k e^{kx} + 6 e^{kx} = 0. \][/tex]
Factor out [tex]\( e^{kx} \)[/tex] (noting that [tex]\( e^{kx} \neq 0 \)[/tex]):
[tex]\[ e^{kx} (k^2 - 7k + 6) = 0. \][/tex]
This gives us the quadratic equation:
[tex]\[ k^2 - 7k + 6 = 0. \][/tex]
Now, we need to solve this quadratic equation. The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. For our equation, [tex]\( a = 1 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = 6 \)[/tex].
We calculate the discriminant ([tex]\( \Delta \)[/tex]) of the quadratic equation:
[tex]\[ \Delta = b^2 - 4ac. \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = (-7)^2 - 4 \cdot 1 \cdot 6 = 49 - 24 = 25. \][/tex]
Next, we find the square root of the discriminant:
[tex]\[ \sqrt{\Delta} = \sqrt{25} = 5. \][/tex]
Using the quadratic formula [tex]\( k = \frac{-b \pm \sqrt{\Delta}}{2a} \)[/tex]:
[tex]\[ k = \frac{-(-7) \pm 5}{2 \cdot 1} = \frac{7 \pm 5}{2}. \][/tex]
This gives us two solutions for [tex]\( k \)[/tex]:
[tex]\[ k_1 = \frac{7 + 5}{2} = \frac{12}{2} = 6 \][/tex]
and
[tex]\[ k_2 = \frac{7 - 5}{2} = \frac{2}{2} = 1. \][/tex]
Therefore, the values of [tex]\( k \)[/tex] are [tex]\( k_1 = 6 \)[/tex] and [tex]\( k_2 = 1 \)[/tex].
The largest value of [tex]\( k \)[/tex] is:
[tex]\[ \boxed{6} \][/tex]
The differential equation given is:
[tex]\[ \frac{d^2 y}{dx^2} - 7 \frac{dy}{dx} + 6y = 0. \][/tex]
We will use the method of assuming a solution in the form:
[tex]\[ y = e^{kx}. \][/tex]
Then,
[tex]\[ \frac{dy}{dx} = ke^{kx} \][/tex]
and
[tex]\[ \frac{d^2 y}{dx^2} = k^2 e^{kx}. \][/tex]
Substitute [tex]\( y \)[/tex], [tex]\( \frac{dy}{dx} \)[/tex], and [tex]\( \frac{d^2 y}{dx^2} \)[/tex] into the differential equation:
[tex]\[ k^2 e^{kx} - 7k e^{kx} + 6 e^{kx} = 0. \][/tex]
Factor out [tex]\( e^{kx} \)[/tex] (noting that [tex]\( e^{kx} \neq 0 \)[/tex]):
[tex]\[ e^{kx} (k^2 - 7k + 6) = 0. \][/tex]
This gives us the quadratic equation:
[tex]\[ k^2 - 7k + 6 = 0. \][/tex]
Now, we need to solve this quadratic equation. The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. For our equation, [tex]\( a = 1 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = 6 \)[/tex].
We calculate the discriminant ([tex]\( \Delta \)[/tex]) of the quadratic equation:
[tex]\[ \Delta = b^2 - 4ac. \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = (-7)^2 - 4 \cdot 1 \cdot 6 = 49 - 24 = 25. \][/tex]
Next, we find the square root of the discriminant:
[tex]\[ \sqrt{\Delta} = \sqrt{25} = 5. \][/tex]
Using the quadratic formula [tex]\( k = \frac{-b \pm \sqrt{\Delta}}{2a} \)[/tex]:
[tex]\[ k = \frac{-(-7) \pm 5}{2 \cdot 1} = \frac{7 \pm 5}{2}. \][/tex]
This gives us two solutions for [tex]\( k \)[/tex]:
[tex]\[ k_1 = \frac{7 + 5}{2} = \frac{12}{2} = 6 \][/tex]
and
[tex]\[ k_2 = \frac{7 - 5}{2} = \frac{2}{2} = 1. \][/tex]
Therefore, the values of [tex]\( k \)[/tex] are [tex]\( k_1 = 6 \)[/tex] and [tex]\( k_2 = 1 \)[/tex].
The largest value of [tex]\( k \)[/tex] is:
[tex]\[ \boxed{6} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.