IDNLearn.com offers a comprehensive solution for finding accurate answers quickly. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
Sure, let's solve each part of the question step-by-step.
### Part a: Finding the Derivative Function [tex]\( f'(x) \)[/tex]
To find the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = \frac{7}{2x+1} \)[/tex], we can use the limit definition of a derivative, but let's use standard differentiation rules for simplicity.
We have [tex]\( f(x) = \frac{7}{2x+1} \)[/tex]. This is a quotient, so we can use the chain rule to differentiate it. Let [tex]\( u = 2x + 1 \)[/tex]. Then:
[tex]\[ f(x) = \frac{7}{u} \][/tex]
To find [tex]\( \frac{d}{dx} \left( \frac{7}{u} \right) \)[/tex], we first find [tex]\( \frac{d}{du} \left( \frac{7}{u} \right) \)[/tex].
[tex]\[ \frac{d}{du} \left( \frac{7}{u} \right) = -\frac{7}{u^2} \][/tex]
Next, we need [tex]\( \frac{du}{dx} \)[/tex]:
[tex]\[ \frac{du}{dx} = 2 \][/tex]
Using the chain rule [tex]\( \frac{d}{dx} = \frac{d}{du} \cdot \frac{du}{dx} \)[/tex]:
[tex]\[ f'(x) = -\frac{7}{u^2} \cdot 2 = -\frac{14}{(2x+1)^2} \][/tex]
So, the derivative function is:
[tex]\[ f'(x) = -\frac{14}{(2x+1)^2} \][/tex]
### Part b: Evaluating [tex]\( f'(a) \)[/tex] for Given Values of [tex]\( a \)[/tex]
Let's now evaluate [tex]\( f'(a) \)[/tex] for [tex]\( a = -\frac{1}{3} \)[/tex] and [tex]\( a = 4 \)[/tex].
1. For [tex]\( a = -\frac{1}{3} \)[/tex]:
[tex]\[ f'\left( -\frac{1}{3} \right) = -\frac{14}{\left( 2 \left( -\frac{1}{3} \right) + 1 \right)^2} \][/tex]
Simplify the denominator:
[tex]\[ 2 \left( -\frac{1}{3} \right) = -\frac{2}{3} \][/tex]
[tex]\[ -\frac{2}{3} + 1 = -\frac{2}{3} + \frac{3}{3} = \frac{1}{3} \][/tex]
So:
[tex]\[ f'\left( -\frac{1}{3} \right) = -\frac{14}{\left( \frac{1}{3} \right)^2} = -\frac{14}{\frac{1}{9}} = -14 \cdot 9 = -126 \][/tex]
Therefore, [tex]\( f' \left( -\frac{1}{3} \right) = -126 \)[/tex].
2. For [tex]\( a = 4 \)[/tex]:
[tex]\[ f'(4) = -\frac{14}{(2 \cdot 4 + 1)^2} \][/tex]
Simplify the expression:
[tex]\[ 2 \cdot 4 + 1 = 8 + 1 = 9 \][/tex]
So:
[tex]\[ f'(4) = -\frac{14}{9^2} = -\frac{14}{81} \][/tex]
Therefore, [tex]\( f'(4) = -\frac{14}{81} \)[/tex].
### Summary
a. The derivative function [tex]\( f'(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{14}{(2x+1)^2} \][/tex]
b. Evaluating the derivative at the given points:
- [tex]\( f'\left( -\frac{1}{3} \right) = -126 \)[/tex]
- [tex]\( f'(4) = -\frac{14}{81} \)[/tex]
### Part a: Finding the Derivative Function [tex]\( f'(x) \)[/tex]
To find the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = \frac{7}{2x+1} \)[/tex], we can use the limit definition of a derivative, but let's use standard differentiation rules for simplicity.
We have [tex]\( f(x) = \frac{7}{2x+1} \)[/tex]. This is a quotient, so we can use the chain rule to differentiate it. Let [tex]\( u = 2x + 1 \)[/tex]. Then:
[tex]\[ f(x) = \frac{7}{u} \][/tex]
To find [tex]\( \frac{d}{dx} \left( \frac{7}{u} \right) \)[/tex], we first find [tex]\( \frac{d}{du} \left( \frac{7}{u} \right) \)[/tex].
[tex]\[ \frac{d}{du} \left( \frac{7}{u} \right) = -\frac{7}{u^2} \][/tex]
Next, we need [tex]\( \frac{du}{dx} \)[/tex]:
[tex]\[ \frac{du}{dx} = 2 \][/tex]
Using the chain rule [tex]\( \frac{d}{dx} = \frac{d}{du} \cdot \frac{du}{dx} \)[/tex]:
[tex]\[ f'(x) = -\frac{7}{u^2} \cdot 2 = -\frac{14}{(2x+1)^2} \][/tex]
So, the derivative function is:
[tex]\[ f'(x) = -\frac{14}{(2x+1)^2} \][/tex]
### Part b: Evaluating [tex]\( f'(a) \)[/tex] for Given Values of [tex]\( a \)[/tex]
Let's now evaluate [tex]\( f'(a) \)[/tex] for [tex]\( a = -\frac{1}{3} \)[/tex] and [tex]\( a = 4 \)[/tex].
1. For [tex]\( a = -\frac{1}{3} \)[/tex]:
[tex]\[ f'\left( -\frac{1}{3} \right) = -\frac{14}{\left( 2 \left( -\frac{1}{3} \right) + 1 \right)^2} \][/tex]
Simplify the denominator:
[tex]\[ 2 \left( -\frac{1}{3} \right) = -\frac{2}{3} \][/tex]
[tex]\[ -\frac{2}{3} + 1 = -\frac{2}{3} + \frac{3}{3} = \frac{1}{3} \][/tex]
So:
[tex]\[ f'\left( -\frac{1}{3} \right) = -\frac{14}{\left( \frac{1}{3} \right)^2} = -\frac{14}{\frac{1}{9}} = -14 \cdot 9 = -126 \][/tex]
Therefore, [tex]\( f' \left( -\frac{1}{3} \right) = -126 \)[/tex].
2. For [tex]\( a = 4 \)[/tex]:
[tex]\[ f'(4) = -\frac{14}{(2 \cdot 4 + 1)^2} \][/tex]
Simplify the expression:
[tex]\[ 2 \cdot 4 + 1 = 8 + 1 = 9 \][/tex]
So:
[tex]\[ f'(4) = -\frac{14}{9^2} = -\frac{14}{81} \][/tex]
Therefore, [tex]\( f'(4) = -\frac{14}{81} \)[/tex].
### Summary
a. The derivative function [tex]\( f'(x) \)[/tex] is:
[tex]\[ f'(x) = -\frac{14}{(2x+1)^2} \][/tex]
b. Evaluating the derivative at the given points:
- [tex]\( f'\left( -\frac{1}{3} \right) = -126 \)[/tex]
- [tex]\( f'(4) = -\frac{14}{81} \)[/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.