Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Get prompt and accurate answers to your questions from our community of knowledgeable experts.
Sagot :
To determine the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for the reaction:
[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]
we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]
Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]
Now, let's calculate it step-by-step:
1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]
2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]
Upon rounding to two significant figures, we get:
[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]
Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]
we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]
Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]
Now, let's calculate it step-by-step:
1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]
2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]
Upon rounding to two significant figures, we get:
[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]
Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.