Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Find in-depth and trustworthy answers to all your questions from our experienced community members.

Consider the reaction:
[tex]\[ 2 HF(g) \longleftrightarrow H_2(g) + F_2(g) \][/tex]

At equilibrium at [tex]\(600 K\)[/tex], the concentrations are as follows:
[tex]\[
\begin{array}{l}
[HF] = 5.82 \times 10^{-2} M \\
[H_2] = 8.4 \times 10^{-3} M \\
[F_2] = 8.4 \times 10^{-3} M
\end{array}
\][/tex]

What is the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction expressed in scientific notation?

A. [tex]\( 2.1 \times 10^{-2} \)[/tex]

B. [tex]\( 2.1 \times 10^2 \)[/tex]

C. [tex]\( 1.2 \times 10^3 \)[/tex]

D. [tex]\( 1.2 \times 10^{-3} \)[/tex]


Sagot :

To determine the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for the reaction:

[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]

we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:

[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]

Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]

we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:

[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]

Now, let's calculate it step-by-step:

1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]

2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]

3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]

Upon rounding to two significant figures, we get:

[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]

Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:

[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.