Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To find the equilibrium constant ([tex]\( K_{\text{eq}} \)[/tex]) for the reaction:
[tex]\[ 2 \text{NOCl} (g) \leftrightarrow 2 \text{NO} (g) + \text{Cl}_2 (g) \][/tex]
we use the given equilibrium concentrations:
[tex]\[ \begin{array}{l} [ \text{NOCl} ] = 1.4 \times 10^{-2} \, \text{M} \\ [ \text{NO} ] = 1.2 \times 10^{-3} \, \text{M} \\ [ \text{Cl}_2 ] = 2.2 \times 10^{-3} \, \text{M} \end{array} \][/tex]
The expression for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction is:
[tex]\[ K_{\text{eq}} = \frac{[\text{NO}]^2 [\text{Cl}_2]}{[\text{NOCl}]^2} \][/tex]
Let's plug in the given equilibrium concentrations into this expression:
[tex]\[ K_{\text{eq}} = \frac{(1.2 \times 10^{-3})^2 (2.2 \times 10^{-3})}{(1.4 \times 10^{-2})^2} \][/tex]
Now, let's calculate step-by-step:
1. Calculate [tex]\( (1.2 \times 10^{-3})^2 \)[/tex]:
[tex]\[ (1.2 \times 10^{-3})^2 = 1.44 \times 10^{-6} \][/tex]
2. Multiply this result by [tex]\( 2.2 \times 10^{-3} \)[/tex]:
[tex]\[ 1.44 \times 10^{-6} \times 2.2 \times 10^{-3} = 3.168 \times 10^{-9} \][/tex]
3. Calculate [tex]\( (1.4 \times 10^{-2})^2 \)[/tex]:
[tex]\[ (1.4 \times 10^{-2})^2 = 1.96 \times 10^{-4} \][/tex]
4. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{3.168 \times 10^{-9}}{1.96 \times 10^{-4}} \][/tex]
Now, perform the division:
[tex]\[ K_{\text{eq}} = 1.616326530612245 \times 10^{-5} \][/tex]
Therefore, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction expressed in scientific notation is approximately:
[tex]\[ 1.6 \times 10^{-5} \][/tex]
Hence, the correct answer is:
[tex]\[ 1.6 \times 10^{-5} \][/tex]
[tex]\[ 2 \text{NOCl} (g) \leftrightarrow 2 \text{NO} (g) + \text{Cl}_2 (g) \][/tex]
we use the given equilibrium concentrations:
[tex]\[ \begin{array}{l} [ \text{NOCl} ] = 1.4 \times 10^{-2} \, \text{M} \\ [ \text{NO} ] = 1.2 \times 10^{-3} \, \text{M} \\ [ \text{Cl}_2 ] = 2.2 \times 10^{-3} \, \text{M} \end{array} \][/tex]
The expression for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction is:
[tex]\[ K_{\text{eq}} = \frac{[\text{NO}]^2 [\text{Cl}_2]}{[\text{NOCl}]^2} \][/tex]
Let's plug in the given equilibrium concentrations into this expression:
[tex]\[ K_{\text{eq}} = \frac{(1.2 \times 10^{-3})^2 (2.2 \times 10^{-3})}{(1.4 \times 10^{-2})^2} \][/tex]
Now, let's calculate step-by-step:
1. Calculate [tex]\( (1.2 \times 10^{-3})^2 \)[/tex]:
[tex]\[ (1.2 \times 10^{-3})^2 = 1.44 \times 10^{-6} \][/tex]
2. Multiply this result by [tex]\( 2.2 \times 10^{-3} \)[/tex]:
[tex]\[ 1.44 \times 10^{-6} \times 2.2 \times 10^{-3} = 3.168 \times 10^{-9} \][/tex]
3. Calculate [tex]\( (1.4 \times 10^{-2})^2 \)[/tex]:
[tex]\[ (1.4 \times 10^{-2})^2 = 1.96 \times 10^{-4} \][/tex]
4. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{3.168 \times 10^{-9}}{1.96 \times 10^{-4}} \][/tex]
Now, perform the division:
[tex]\[ K_{\text{eq}} = 1.616326530612245 \times 10^{-5} \][/tex]
Therefore, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction expressed in scientific notation is approximately:
[tex]\[ 1.6 \times 10^{-5} \][/tex]
Hence, the correct answer is:
[tex]\[ 1.6 \times 10^{-5} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.