IDNLearn.com is your reliable source for expert answers and community insights. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.

The star Rho [tex]${ }^1$[/tex] Cancri is 57 light-years from Earth and has a mass 0.85 times that of our Sun. A planet has been detected in a circular orbit around Rho [tex]${ }^1$[/tex] Cancri with an orbital radius equal to 0.11 times the radius of the Earth's orbit around the Sun. The mass of the Sun is [tex]$1.99 \times 10^{30} \, \text{kg}$[/tex]. The orbital radius of the Earth is [tex][tex]$1.50 \times 10^8 \, \text{km}$[/tex][/tex].

Part A:

What is the orbital speed of the planet of Rho [tex]${ }^1$[/tex] Cancri?


Sagot :

Certainly! Let's solve for the orbital speed of the planet around the star Rho [tex]${ }^1$[/tex] Cancri step-by-step.

### Step 1: Gather and understand the given data.

1. Mass of the Sun ([tex]\( M_{\text{sun}} \)[/tex]): [tex]\( 1.99 \times 10^{30} \)[/tex] kg
2. Orbital radius of Earth around the Sun: [tex]\( 1.50 \times 10^8 \)[/tex] km = [tex]\( 1.50 \times 10^{11} \)[/tex] meters (since 1 km = 1000 m)
3. Mass of star Rho [tex]${ }^1$[/tex] Cancri ([tex]\( M_{\text{rho}} \)[/tex]): [tex]\( 0.85 \times M_{\text{sun}} \)[/tex]
4. Orbital radius of the planet around Rho [tex]${ }^1$[/tex] Cancri: [tex]\( 0.11 \times \)[/tex] Earth's orbital radius around the Sun

### Step 2: Convert the given values into appropriate units and calculate intermediate values.

1. Mass of Rho [tex]${ }^1$[/tex] Cancri:
[tex]\[ M_{\text{rho}} = 0.85 \times 1.99 \times 10^{30} \, \text{kg} = 1.6915 \times 10^{30} \, \text{kg} \][/tex]

2. Orbital radius of the planet around Rho [tex]${ }^1$[/tex] Cancri:
[tex]\[ \text{Orbital Radius} = 0.11 \times 1.50 \times 10^{11} \, \text{m} = 1.65 \times 10^{10} \, \text{m} \][/tex]

### Step 3: Use the formula for orbital speed.

The formula for the orbital speed ([tex]\( v \)[/tex]) of a planet in a circular orbit is given by:
[tex]\[ v = \sqrt{\frac{G \times M_{\text{star}}}{r}} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- [tex]\( M_{\text{star}} \)[/tex] is the mass of the star (Rho [tex]${ }^1$[/tex] Cancri in this case)
- [tex]\( r \)[/tex] is the orbital radius of the planet

### Step 4: Substitute the values into the formula.

[tex]\[ v = \sqrt{\frac{6.67430 \times 10^{-11} \times 1.6915 \times 10^{30}}{1.65 \times 10^{10}}} \][/tex]

### Step 5: Calculate the orbital speed.

Let's compute this:

Numerator:
[tex]\[ 6.67430 \times 10^{-11} \times 1.6915 \times 10^{30} = 1.128379745 \times 10^{20} \][/tex]

Denominator:
[tex]\[ 1.65 \times 10^{10} \][/tex]

Now, we divide:
[tex]\[ \frac{1.128379745 \times 10^{20}}{1.65 \times 10^{10}} = 6.838665 \times 10^9 \][/tex]

Finally, take the square root:
[tex]\[ v = \sqrt{6.838665 \times 10^9} \approx 82717.4 \, \text{m/s} \][/tex]

### Conclusion:

The orbital speed of the planet around Rho [tex]${ }^1$[/tex] Cancri is approximately [tex]\( 82717.4 \, \text{m/s} \)[/tex].