IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.

Consider the following chemical equation.

[tex]\[ 4 \text{Al} (s) + 3 \text{O}_2 (g) \rightarrow 2 \text{Al}_2 \text{O}_3 (s) \][/tex]

Calculate the theoretical yield of aluminum oxide if [tex]\(0.500 \, \text{mol} \, \text{Al}\)[/tex] reacts with [tex]\(0.500 \, \text{mol} \, \text{O}_2\)[/tex]. The molar mass of aluminum oxide is [tex]\(101.96 \, \text{g/mol}\)[/tex].


Sagot :

Sure, let's solve this step-by-step.

### 1. Determine the Limiting Reactant:
First, we need to figure out which reactant is the limiting reagent since it will determine the maximum amount of product that can be formed.

Balanced Chemical Equation:
[tex]$ 4 Al (s) + 3 O_2 (g) \rightarrow 2 Al_2O_3 (s) $[/tex]

Given Quantities:
- [tex]\(0.500 \, \text{mol Al}\)[/tex]
- [tex]\(0.500 \, \text{mol O}_2\)[/tex]

1. For Aluminum (Al):
To fully react with [tex]\( 0.500 \)[/tex] moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ 0.500\, \text{mol Al} \times \left(\frac{3 \, \text{mol O}_2}{4 \, \text{mol Al}}\right) = 0.375 \, \text{mol O}_2 \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol O}_2\)[/tex] available.

2. For Oxygen (O}_2):
To fully react with [tex]\(0.500 \, \text{mol O}_2\)[/tex]:
[tex]\[ 0.500\, \text{mol O}_2 \times \left(\frac{4 \, \text{mol Al}}{3 \, \text{mol O}_2}\right) = 0.667 \, \text{mol Al} \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol Al}\)[/tex] available.

Since [tex]\(0.500 \, \text{mol O}_2\)[/tex] is available and only [tex]\(0.375 \, \text{mol O}_2\)[/tex] is required for [tex]\(0.500 \, \text{mol Al}\)[/tex]:
- [tex]\( \text{Al}\)[/tex] is in excess.
- [tex]\( \text{O}_2\)[/tex] is the limiting reactant.

### 2. Calculate Theoretical Yield of Aluminum Oxide ([tex]\( Al_2O_3 \)[/tex]):

Using the limiting reactant ([tex]\( O_2 \)[/tex]) to calculate the yield of [tex]\( Al_2O_3 \)[/tex]:

[tex]\[ \text{Moles of } Al_2O_3 = 0.500 \, \text{mol O}_2 \times \left(\frac{2 \, \text{mol Al}_2O_3}{3 \, \text{mol O}_2}\right) = 0.333 \, \text{mol Al}_2O_3 \][/tex]

### 3. Convert Moles of [tex]\( Al_2O_3 \)[/tex] to Mass:

Given the molar mass of [tex]\( Al_2O_3 \)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]:

[tex]\[ \text{Mass of } Al_2O_3 = 0.333 \, \text{mol Al}_2O_3 \times 101.96 \, \text{g/mol} = 33.99 \, \text{g} \][/tex]

### Conclusion:
The theoretical yield of aluminum oxide ([tex]\( Al_2O_3 \)[/tex]) when [tex]\( 0.500 \, \text{mol Al}\)[/tex] reacts with [tex]\( 0.500 \, \text{mol } O_2\)[/tex] is:

- Moles of [tex]\( Al_2O_3\)[/tex]: [tex]\(0.333 \, \text{mol} \)[/tex]
- Mass of [tex]\( Al_2O_3\)[/tex]: [tex]\(33.99 \, \text{g} \)[/tex]

So the maximum amount of aluminum oxide that can be produced under these conditions is [tex]\(33.99 \, \text{grams}\)[/tex].