Connect with a community that values knowledge and expertise on IDNLearn.com. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Sure, let's solve this step-by-step.
### 1. Determine the Limiting Reactant:
First, we need to figure out which reactant is the limiting reagent since it will determine the maximum amount of product that can be formed.
Balanced Chemical Equation:
[tex]$ 4 Al (s) + 3 O_2 (g) \rightarrow 2 Al_2O_3 (s) $[/tex]
Given Quantities:
- [tex]\(0.500 \, \text{mol Al}\)[/tex]
- [tex]\(0.500 \, \text{mol O}_2\)[/tex]
1. For Aluminum (Al):
To fully react with [tex]\( 0.500 \)[/tex] moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ 0.500\, \text{mol Al} \times \left(\frac{3 \, \text{mol O}_2}{4 \, \text{mol Al}}\right) = 0.375 \, \text{mol O}_2 \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol O}_2\)[/tex] available.
2. For Oxygen (O}_2):
To fully react with [tex]\(0.500 \, \text{mol O}_2\)[/tex]:
[tex]\[ 0.500\, \text{mol O}_2 \times \left(\frac{4 \, \text{mol Al}}{3 \, \text{mol O}_2}\right) = 0.667 \, \text{mol Al} \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol Al}\)[/tex] available.
Since [tex]\(0.500 \, \text{mol O}_2\)[/tex] is available and only [tex]\(0.375 \, \text{mol O}_2\)[/tex] is required for [tex]\(0.500 \, \text{mol Al}\)[/tex]:
- [tex]\( \text{Al}\)[/tex] is in excess.
- [tex]\( \text{O}_2\)[/tex] is the limiting reactant.
### 2. Calculate Theoretical Yield of Aluminum Oxide ([tex]\( Al_2O_3 \)[/tex]):
Using the limiting reactant ([tex]\( O_2 \)[/tex]) to calculate the yield of [tex]\( Al_2O_3 \)[/tex]:
[tex]\[ \text{Moles of } Al_2O_3 = 0.500 \, \text{mol O}_2 \times \left(\frac{2 \, \text{mol Al}_2O_3}{3 \, \text{mol O}_2}\right) = 0.333 \, \text{mol Al}_2O_3 \][/tex]
### 3. Convert Moles of [tex]\( Al_2O_3 \)[/tex] to Mass:
Given the molar mass of [tex]\( Al_2O_3 \)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]:
[tex]\[ \text{Mass of } Al_2O_3 = 0.333 \, \text{mol Al}_2O_3 \times 101.96 \, \text{g/mol} = 33.99 \, \text{g} \][/tex]
### Conclusion:
The theoretical yield of aluminum oxide ([tex]\( Al_2O_3 \)[/tex]) when [tex]\( 0.500 \, \text{mol Al}\)[/tex] reacts with [tex]\( 0.500 \, \text{mol } O_2\)[/tex] is:
- Moles of [tex]\( Al_2O_3\)[/tex]: [tex]\(0.333 \, \text{mol} \)[/tex]
- Mass of [tex]\( Al_2O_3\)[/tex]: [tex]\(33.99 \, \text{g} \)[/tex]
So the maximum amount of aluminum oxide that can be produced under these conditions is [tex]\(33.99 \, \text{grams}\)[/tex].
### 1. Determine the Limiting Reactant:
First, we need to figure out which reactant is the limiting reagent since it will determine the maximum amount of product that can be formed.
Balanced Chemical Equation:
[tex]$ 4 Al (s) + 3 O_2 (g) \rightarrow 2 Al_2O_3 (s) $[/tex]
Given Quantities:
- [tex]\(0.500 \, \text{mol Al}\)[/tex]
- [tex]\(0.500 \, \text{mol O}_2\)[/tex]
1. For Aluminum (Al):
To fully react with [tex]\( 0.500 \)[/tex] moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ 0.500\, \text{mol Al} \times \left(\frac{3 \, \text{mol O}_2}{4 \, \text{mol Al}}\right) = 0.375 \, \text{mol O}_2 \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol O}_2\)[/tex] available.
2. For Oxygen (O}_2):
To fully react with [tex]\(0.500 \, \text{mol O}_2\)[/tex]:
[tex]\[ 0.500\, \text{mol O}_2 \times \left(\frac{4 \, \text{mol Al}}{3 \, \text{mol O}_2}\right) = 0.667 \, \text{mol Al} \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol Al}\)[/tex] available.
Since [tex]\(0.500 \, \text{mol O}_2\)[/tex] is available and only [tex]\(0.375 \, \text{mol O}_2\)[/tex] is required for [tex]\(0.500 \, \text{mol Al}\)[/tex]:
- [tex]\( \text{Al}\)[/tex] is in excess.
- [tex]\( \text{O}_2\)[/tex] is the limiting reactant.
### 2. Calculate Theoretical Yield of Aluminum Oxide ([tex]\( Al_2O_3 \)[/tex]):
Using the limiting reactant ([tex]\( O_2 \)[/tex]) to calculate the yield of [tex]\( Al_2O_3 \)[/tex]:
[tex]\[ \text{Moles of } Al_2O_3 = 0.500 \, \text{mol O}_2 \times \left(\frac{2 \, \text{mol Al}_2O_3}{3 \, \text{mol O}_2}\right) = 0.333 \, \text{mol Al}_2O_3 \][/tex]
### 3. Convert Moles of [tex]\( Al_2O_3 \)[/tex] to Mass:
Given the molar mass of [tex]\( Al_2O_3 \)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]:
[tex]\[ \text{Mass of } Al_2O_3 = 0.333 \, \text{mol Al}_2O_3 \times 101.96 \, \text{g/mol} = 33.99 \, \text{g} \][/tex]
### Conclusion:
The theoretical yield of aluminum oxide ([tex]\( Al_2O_3 \)[/tex]) when [tex]\( 0.500 \, \text{mol Al}\)[/tex] reacts with [tex]\( 0.500 \, \text{mol } O_2\)[/tex] is:
- Moles of [tex]\( Al_2O_3\)[/tex]: [tex]\(0.333 \, \text{mol} \)[/tex]
- Mass of [tex]\( Al_2O_3\)[/tex]: [tex]\(33.99 \, \text{g} \)[/tex]
So the maximum amount of aluminum oxide that can be produced under these conditions is [tex]\(33.99 \, \text{grams}\)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.