Connect with knowledgeable individuals and get your questions answered on IDNLearn.com. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.

Determine the value of [tex]\( p \)[/tex] for the series below, using the fact that [tex]\( a^{\log_b(n)} = b^{\log_b(n) \log_b(a)} = n^{\log_b(a)} \)[/tex].

[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]

Be sure to include parentheses around the arguments of any logarithmic functions in your answer.


Sagot :

To determine the value of [tex]\( p \)[/tex] for the given series, we start with the series:

[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]

We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.

First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:

[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]

This can be simplified further. Using the power rule for exponents:

[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]

Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:

[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]

Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:

[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]

Hence, our original series now looks like:

[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]

We can combine the exponents for [tex]\( n \)[/tex]:

[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]

So our series is now:

[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]

This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].

So, the value of [tex]\( p \)[/tex] is:

[tex]\[ p = 4 \][/tex]