IDNLearn.com makes it easy to find answers and share knowledge with others. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To determine the value of [tex]\( p \)[/tex] for the given series, we start with the series:
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.