IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
Sure, let's find the first and second derivatives of the function [tex]\( h(x) = \tan(3x + 5) \)[/tex] step by step.
### Step 1: First Derivative [tex]\( h'(x) \)[/tex]
First, recall the derivative of the tangent function:
[tex]\[ \frac{d}{dx} [\tan(u)] = \sec^2(u) \cdot \frac{du}{dx} \][/tex]
Given [tex]\( h(x) = \tan(3x + 5) \)[/tex], let's set [tex]\( u = 3x + 5 \)[/tex]. Then we need to find the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} [3x + 5] = 3 \][/tex]
Using the chain rule:
[tex]\[ h'(x) = \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot \frac{d}{dx} [3x + 5] = \sec^2(3x + 5) \cdot 3 \][/tex]
Recall the trigonometric identity:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
Thus, we can express the first derivative as:
[tex]\[ h'(x) = 3 \sec^2(3x + 5) = 3 (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( h(x) = \tan(3x + 5) \)[/tex], we have:
[tex]\[ h'(x) = 3 (1 + \tan^2(3x + 5)) \][/tex]
This simplifies to:
[tex]\[ h'(x) = 3 (\tan^2(3x + 5) + 1) \][/tex]
Finally:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
### Step 2: Second Derivative [tex]\( h''(x) \)[/tex]
Now, let's move on to the second derivative [tex]\( h''(x) \)[/tex]. Using the result from [tex]\( h'(x) \)[/tex], we get:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
We need to differentiate [tex]\( h'(x) \)[/tex] again with respect to [tex]\( x \)[/tex]. Let's break it into two parts.
1. Differentiate [tex]\( 3\tan^2(3x + 5) \)[/tex]:
[tex]\[ \frac{d}{dx} [3\tan^2(3x + 5)] = 3 \cdot 2\tan(3x + 5) \cdot \frac{d}{dx} [\tan(3x + 5)] \][/tex]
Now, we need [tex]\( \frac{d}{dx} [\tan(3x + 5)] \)[/tex]:
[tex]\[ \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot 3 \][/tex]
Therefore:
[tex]\[ 6\tan(3x + 5) \cdot 3\sec^2(3x + 5) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
2. Differentiate the constant term [tex]\( 3 \)[/tex], which is [tex]\( 0 \)[/tex].
Combining these results, the second derivative is:
[tex]\[ h''(x) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
Recall:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
[tex]\[ \sec^2(3x + 5) = 1 + \tan^2(3x + 5) \][/tex]
Now substitute back:
[tex]\[ h''(x) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Simplifying:
[tex]\[ h''(x) = 18\tan(3x + 5)(1 + \tan^2(3x + 5)) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( 6 \times 3 = 18 \)[/tex], we can write it as:
[tex]\[ h''(x) = 3 (6 \tan(3x + 5)^2 + 6) \tan(3x + 5) \][/tex]
However, preserving the simplified form:
[tex]\[ h''(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \][/tex]
Hence, the final answers are:
[tex]\[ \begin{array}{l} h^{\prime}(x) = 3\tan^2(3x + 5) + 3 \\ h^{\prime \prime}(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \end{array} \][/tex]
### Step 1: First Derivative [tex]\( h'(x) \)[/tex]
First, recall the derivative of the tangent function:
[tex]\[ \frac{d}{dx} [\tan(u)] = \sec^2(u) \cdot \frac{du}{dx} \][/tex]
Given [tex]\( h(x) = \tan(3x + 5) \)[/tex], let's set [tex]\( u = 3x + 5 \)[/tex]. Then we need to find the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} [3x + 5] = 3 \][/tex]
Using the chain rule:
[tex]\[ h'(x) = \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot \frac{d}{dx} [3x + 5] = \sec^2(3x + 5) \cdot 3 \][/tex]
Recall the trigonometric identity:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
Thus, we can express the first derivative as:
[tex]\[ h'(x) = 3 \sec^2(3x + 5) = 3 (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( h(x) = \tan(3x + 5) \)[/tex], we have:
[tex]\[ h'(x) = 3 (1 + \tan^2(3x + 5)) \][/tex]
This simplifies to:
[tex]\[ h'(x) = 3 (\tan^2(3x + 5) + 1) \][/tex]
Finally:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
### Step 2: Second Derivative [tex]\( h''(x) \)[/tex]
Now, let's move on to the second derivative [tex]\( h''(x) \)[/tex]. Using the result from [tex]\( h'(x) \)[/tex], we get:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
We need to differentiate [tex]\( h'(x) \)[/tex] again with respect to [tex]\( x \)[/tex]. Let's break it into two parts.
1. Differentiate [tex]\( 3\tan^2(3x + 5) \)[/tex]:
[tex]\[ \frac{d}{dx} [3\tan^2(3x + 5)] = 3 \cdot 2\tan(3x + 5) \cdot \frac{d}{dx} [\tan(3x + 5)] \][/tex]
Now, we need [tex]\( \frac{d}{dx} [\tan(3x + 5)] \)[/tex]:
[tex]\[ \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot 3 \][/tex]
Therefore:
[tex]\[ 6\tan(3x + 5) \cdot 3\sec^2(3x + 5) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
2. Differentiate the constant term [tex]\( 3 \)[/tex], which is [tex]\( 0 \)[/tex].
Combining these results, the second derivative is:
[tex]\[ h''(x) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
Recall:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
[tex]\[ \sec^2(3x + 5) = 1 + \tan^2(3x + 5) \][/tex]
Now substitute back:
[tex]\[ h''(x) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Simplifying:
[tex]\[ h''(x) = 18\tan(3x + 5)(1 + \tan^2(3x + 5)) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( 6 \times 3 = 18 \)[/tex], we can write it as:
[tex]\[ h''(x) = 3 (6 \tan(3x + 5)^2 + 6) \tan(3x + 5) \][/tex]
However, preserving the simplified form:
[tex]\[ h''(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \][/tex]
Hence, the final answers are:
[tex]\[ \begin{array}{l} h^{\prime}(x) = 3\tan^2(3x + 5) + 3 \\ h^{\prime \prime}(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \end{array} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.