Expand your horizons with the diverse and informative answers found on IDNLearn.com. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
Certainly! Let's go through the steps methodically to prove that [tex]$(AB)^T=B^T A^T$[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.