IDNLearn.com: Your trusted platform for finding precise and reliable answers. Discover reliable and timely information on any topic from our network of knowledgeable professionals.
Sagot :
Certainly! Let's delve into each of the parts of the problem where [tex]\( X \)[/tex] follows a Poisson distribution with a mean (λ) of 5.2.
### a. [tex]\( P(X=6) \)[/tex]
To find the probability of exactly 6 events occurring, which is [tex]\( P(X=6) \)[/tex], we use the probability mass function (PMF) of the Poisson distribution:
[tex]\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \][/tex]
For [tex]\( k=6 \)[/tex] and [tex]\( \lambda=5.2 \)[/tex],
[tex]\[ P(X=6) = \frac{e^{-5.2} \cdot 5.2^6}{6!} \][/tex]
Using the appropriate computations,
[tex]\[ P(X=6) \approx 0.151. \][/tex]
### b. [tex]\( P(X \leq 6) \)[/tex]
To find the cumulative probability up to and including 6 events, [tex]\( P(X \leq 6) \)[/tex], we use the cumulative distribution function (CDF) of the Poisson distribution which sums up the probabilities from 0 to 6:
[tex]\[ P(X \leq 6) = \sum_{k=0}^{6} P(X=k) \][/tex]
After computing each term and summing them up,
[tex]\[ P(X \leq 6) \approx 0.732. \][/tex]
### c. [tex]\( P(X > 6) \)[/tex]
To find the probability of more than 6 events occurring, which is [tex]\( P(X>6) \)[/tex], we can use the complement rule since we already know [tex]\( P(X \leq 6) \)[/tex]:
[tex]\[ P(X > 6) = 1 - P(X \leq 6) \][/tex]
Given that [tex]\( P(X \leq 6) \approx 0.732 \)[/tex],
[tex]\[ P(X > 6) = 1 - 0.732 \approx 0.268. \][/tex]
Therefore, the probabilities are:
- a. [tex]\( P(X=6) \approx 0.151 \)[/tex]
- b. [tex]\( P(X \leq 6) \approx 0.732 \)[/tex]
- c. [tex]\( P(X>6) \approx 0.268 \)[/tex]
These values are rounded to three decimal places as required.
### a. [tex]\( P(X=6) \)[/tex]
To find the probability of exactly 6 events occurring, which is [tex]\( P(X=6) \)[/tex], we use the probability mass function (PMF) of the Poisson distribution:
[tex]\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \][/tex]
For [tex]\( k=6 \)[/tex] and [tex]\( \lambda=5.2 \)[/tex],
[tex]\[ P(X=6) = \frac{e^{-5.2} \cdot 5.2^6}{6!} \][/tex]
Using the appropriate computations,
[tex]\[ P(X=6) \approx 0.151. \][/tex]
### b. [tex]\( P(X \leq 6) \)[/tex]
To find the cumulative probability up to and including 6 events, [tex]\( P(X \leq 6) \)[/tex], we use the cumulative distribution function (CDF) of the Poisson distribution which sums up the probabilities from 0 to 6:
[tex]\[ P(X \leq 6) = \sum_{k=0}^{6} P(X=k) \][/tex]
After computing each term and summing them up,
[tex]\[ P(X \leq 6) \approx 0.732. \][/tex]
### c. [tex]\( P(X > 6) \)[/tex]
To find the probability of more than 6 events occurring, which is [tex]\( P(X>6) \)[/tex], we can use the complement rule since we already know [tex]\( P(X \leq 6) \)[/tex]:
[tex]\[ P(X > 6) = 1 - P(X \leq 6) \][/tex]
Given that [tex]\( P(X \leq 6) \approx 0.732 \)[/tex],
[tex]\[ P(X > 6) = 1 - 0.732 \approx 0.268. \][/tex]
Therefore, the probabilities are:
- a. [tex]\( P(X=6) \approx 0.151 \)[/tex]
- b. [tex]\( P(X \leq 6) \approx 0.732 \)[/tex]
- c. [tex]\( P(X>6) \approx 0.268 \)[/tex]
These values are rounded to three decimal places as required.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.