Find expert answers and community-driven knowledge on IDNLearn.com. Get prompt and accurate answers to your questions from our experts who are always ready to help.

Use two truth tables to show that the pair of compound statements are equivalent: [tex]\( p \vee (q \wedge \sim p) \)[/tex] and [tex]\( p \vee q \)[/tex].

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & \sim p & q \wedge \sim p & p \vee (q \wedge \sim p) \\
\hline
T & T & F & F & T \\
T & F & F & F & T \\
F & T & T & T & T \\
F & F & T & F & F \\
\hline
\end{array}
\][/tex]

[tex]\[
\begin{array}{|c|c|c|}
\hline
p & q & p \vee q \\
\hline
T & T & T \\
T & F & T \\
F & T & T \\
F & F & F \\
\hline
\end{array}
\][/tex]

From the above truth tables, we can observe that [tex]\( p \vee (q \wedge \sim p) \)[/tex] and [tex]\( p \vee q \)[/tex] produce the same results for all combinations of truth values for [tex]\( p \)[/tex] and [tex]\( q \)[/tex], thus proving their equivalence.


Sagot :

To show that the compound statements [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] are equivalent, we will construct and analyze the corresponding truth tables. This process involves evaluating the truth values for each compound statement under all possible truth values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex].

Let's start with the truth table for the first compound statement [tex]\(p \vee (q \wedge \sim p)\)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline p & q & \sim p & q \wedge \sim p & p \vee (q \wedge \sim p) \\ \hline T & T & F & F & T \\ T & F & F & F & T \\ F & T & T & T & T \\ F & F & T & F & F \\ \hline \end{array} \][/tex]

Explanation:
- [tex]\(p\)[/tex] and [tex]\(q\)[/tex] represent the possible truth values.
- [tex]\(\sim p\)[/tex] is the negation of [tex]\(p\)[/tex].
- [tex]\(q \wedge \sim p\)[/tex] is the conjunction of [tex]\(q\)[/tex] and [tex]\(\sim p\)[/tex].
- [tex]\(p \vee (q \wedge \sim p)\)[/tex] is the disjunction of [tex]\(p\)[/tex] and [tex]\(q \wedge \sim p\)[/tex].

Next, let's build the truth table for the second compound statement [tex]\(p \vee q\)[/tex]:

[tex]\[ \begin{array}{|c|c|c|} \hline p & q & p \vee q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \hline \end{array} \][/tex]

Now, we compare the results of both truth tables:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline p & q & p \vee (q \wedge \sim p) & p \vee q \\ \hline T & T & T & T \\ T & F & T & T \\ F & T & T & T \\ F & F & F & F \\ \hline \end{array} \][/tex]

As we can see:
- When [tex]\(p\)[/tex] is True and [tex]\(q\)[/tex] is True, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to True.
- When [tex]\(p\)[/tex] is True and [tex]\(q\)[/tex] is False, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to True.
- When [tex]\(p\)[/tex] is False and [tex]\(q\)[/tex] is True, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to True.
- When [tex]\(p\)[/tex] is False and [tex]\(q\)[/tex] is False, both [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] evaluate to False.

Since the corresponding truth values of [tex]\(p \vee (q \wedge \sim p)\)[/tex] and [tex]\(p \vee q\)[/tex] match for all possible truth values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex], the compound statements are equivalent.