Connect with a community of experts and enthusiasts on IDNLearn.com. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Para resolver este problema, debemos considerar los principios de conservación de la energía y las propiedades de los momentos de inercia de los dos objetos (esfera sólida y cilindro sólido) que están rodando por un plano inclinado.
### Paso 1: Convertir las unidades
Primero, convertimos la altura inicial [tex]\( h = 50.0 \text{ cm} \)[/tex] a metros:
[tex]\[ h = 50.0 \text{ cm} = 0.50 \text{ m} \][/tex]
### Paso 2: Momento de Inercia
El momento de inercia ([tex]\( I \)[/tex]) depende de la forma del objeto.
- Para una esfera sólida, el momento de inercia es:
[tex]\[ I_{\text{esfera}} = \frac{2}{5} mr^2 \][/tex]
- Para un cilindro sólido, el momento de inercia es:
[tex]\[ I_{\text{cilindro}} = \frac{1}{2} mr^2 \][/tex]
Dado que el radio [tex]\( r = 6.0 \text{ cm} = 0.06 \text{ m} \)[/tex] y la masa [tex]\( m = 1.3 \text{ kg} \)[/tex]:
[tex]\[ I_{\text{esfera}} = \frac{2}{5} \cdot 1.3 \cdot (0.06)^2 \][/tex]
[tex]\[ I_{\text{cilindro}} = \frac{1}{2} \cdot 1.3 \cdot (0.06)^2 \][/tex]
### Paso 3: Conservación de Energía
La energía potencial gravitatoria inicial ([tex]\( E_{\text{pot}} \)[/tex]) de ambos objetos es la misma y se convierte en energía cinética ([tex]\( E_{\text{cin}} \)[/tex]) de traslación y rotación al moverse:
[tex]\[ mgh = \frac{1}{2} mv^2 + \frac{1}{2} Iw^2 \][/tex]
Donde [tex]\( w \)[/tex] es la velocidad angular, y para un objeto rodante sin deslizamiento:
[tex]\[ v = rw \implies w = \frac{v}{r} \][/tex]
Sustituyendo [tex]\( w \)[/tex]:
[tex]\[ mgh = \frac{1}{2} mv^2 + \frac{1}{2} I \left( \frac{v}{r} \right)^2 \][/tex]
[tex]\[ mgh = \frac{1}{2} mv^2 + \frac{1}{2} \frac{I}{r^2} v^2 \][/tex]
Simplificando:
[tex]\[ mgh = \frac{1}{2} mv^2 \left( 1 + \frac{I}{mr^2} \right) \][/tex]
### Paso 4: Resolver para [tex]\( v \)[/tex]
Despejamos [tex]\(v\)[/tex] (velocidad final):
Para la esfera sólida:
[tex]\[ v_{\text{esfera}} = \left( \frac{2gh}{1 + \frac{2}{5}} \right)^{1/2} \][/tex]
[tex]\[ v_{\text{esfera}} = \left( \frac{2gh}{1 + \frac{2}{5}} \right)^{1/2} = (2.6457513110645907) \text{ m/s} \][/tex]
Para el cilindro sólido:
[tex]\[ v_{\text{cilindro}} = \left( \frac{2gh}{1 + \frac{1}{2}} \right)^{1/2} \][/tex]
[tex]\[v_{\text{cilindro}} = \left( \frac{2gh}{1 + \frac{1}{2}} \right)^{1/2} = (2.5560386016907755) \text{ m/s} \][/tex]
### Comparación de las velocidades
- Velocidad de la esfera sólida: [tex]\( 2.6457513110645907 \text{ m/s} \)[/tex]
- Velocidad del cilindro sólido: [tex]\( 2.5560386016907755 \text{ m/s} \)[/tex]
### Conclusión
La esfera sólida descenderá más rápido por el plano inclinado con una velocidad de [tex]\( 2.6457513110645907 \text{ m/s} \)[/tex], en comparación con el cilindro sólido, que descenderá a [tex]\( 2.5560386016907755 \text{ m/s} \)[/tex].
### Paso 1: Convertir las unidades
Primero, convertimos la altura inicial [tex]\( h = 50.0 \text{ cm} \)[/tex] a metros:
[tex]\[ h = 50.0 \text{ cm} = 0.50 \text{ m} \][/tex]
### Paso 2: Momento de Inercia
El momento de inercia ([tex]\( I \)[/tex]) depende de la forma del objeto.
- Para una esfera sólida, el momento de inercia es:
[tex]\[ I_{\text{esfera}} = \frac{2}{5} mr^2 \][/tex]
- Para un cilindro sólido, el momento de inercia es:
[tex]\[ I_{\text{cilindro}} = \frac{1}{2} mr^2 \][/tex]
Dado que el radio [tex]\( r = 6.0 \text{ cm} = 0.06 \text{ m} \)[/tex] y la masa [tex]\( m = 1.3 \text{ kg} \)[/tex]:
[tex]\[ I_{\text{esfera}} = \frac{2}{5} \cdot 1.3 \cdot (0.06)^2 \][/tex]
[tex]\[ I_{\text{cilindro}} = \frac{1}{2} \cdot 1.3 \cdot (0.06)^2 \][/tex]
### Paso 3: Conservación de Energía
La energía potencial gravitatoria inicial ([tex]\( E_{\text{pot}} \)[/tex]) de ambos objetos es la misma y se convierte en energía cinética ([tex]\( E_{\text{cin}} \)[/tex]) de traslación y rotación al moverse:
[tex]\[ mgh = \frac{1}{2} mv^2 + \frac{1}{2} Iw^2 \][/tex]
Donde [tex]\( w \)[/tex] es la velocidad angular, y para un objeto rodante sin deslizamiento:
[tex]\[ v = rw \implies w = \frac{v}{r} \][/tex]
Sustituyendo [tex]\( w \)[/tex]:
[tex]\[ mgh = \frac{1}{2} mv^2 + \frac{1}{2} I \left( \frac{v}{r} \right)^2 \][/tex]
[tex]\[ mgh = \frac{1}{2} mv^2 + \frac{1}{2} \frac{I}{r^2} v^2 \][/tex]
Simplificando:
[tex]\[ mgh = \frac{1}{2} mv^2 \left( 1 + \frac{I}{mr^2} \right) \][/tex]
### Paso 4: Resolver para [tex]\( v \)[/tex]
Despejamos [tex]\(v\)[/tex] (velocidad final):
Para la esfera sólida:
[tex]\[ v_{\text{esfera}} = \left( \frac{2gh}{1 + \frac{2}{5}} \right)^{1/2} \][/tex]
[tex]\[ v_{\text{esfera}} = \left( \frac{2gh}{1 + \frac{2}{5}} \right)^{1/2} = (2.6457513110645907) \text{ m/s} \][/tex]
Para el cilindro sólido:
[tex]\[ v_{\text{cilindro}} = \left( \frac{2gh}{1 + \frac{1}{2}} \right)^{1/2} \][/tex]
[tex]\[v_{\text{cilindro}} = \left( \frac{2gh}{1 + \frac{1}{2}} \right)^{1/2} = (2.5560386016907755) \text{ m/s} \][/tex]
### Comparación de las velocidades
- Velocidad de la esfera sólida: [tex]\( 2.6457513110645907 \text{ m/s} \)[/tex]
- Velocidad del cilindro sólido: [tex]\( 2.5560386016907755 \text{ m/s} \)[/tex]
### Conclusión
La esfera sólida descenderá más rápido por el plano inclinado con una velocidad de [tex]\( 2.6457513110645907 \text{ m/s} \)[/tex], en comparación con el cilindro sólido, que descenderá a [tex]\( 2.5560386016907755 \text{ m/s} \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.