IDNLearn.com: Your trusted platform for finding precise and reliable answers. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Sure! To determine the value of the second charge [tex]\( q_2 \)[/tex] given the information in the problem, we can use Coulomb's Law. Coulomb's Law states that the force between two charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges,
- [tex]\( k \)[/tex] is Coulomb’s constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex].
Given:
- [tex]\( q_1 = -0.00325 \, \text{C} \)[/tex]
- [tex]\( F = 48900 \, \text{N} \)[/tex]
- [tex]\( r = 5.62 \, \text{m} \)[/tex]
We need to solve for [tex]\( q_2 \)[/tex]. First, we rearrange Coulomb's Law to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ q_2 = \frac{48900 \cdot (5.62)^2}{8.99 \times 10^9 \cdot | -0.00325 |} \][/tex]
Evaluating the expression inside gives us:
[tex]\[ q_2 = \frac{48900 \cdot 31.5844}{8.99 \times 10^9 \cdot 0.00325} \][/tex]
Let's simplify this step-by-step:
1. Compute the numerator:
[tex]\[ 48900 \cdot 31.5844 \approx 1544642.76 \][/tex]
2. Compute the denominator:
[tex]\[ 8.99 \times 10^9 \cdot 0.00325 \approx 2.92175 \times 10^7 \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ q_2 = \frac{1544642.76}{2.92175 \times 10^7} \approx 0.05286137280739284 \][/tex]
Since the force is repelling and [tex]\( q_1 \)[/tex] is negative, [tex]\( q_2 \)[/tex] should have the same sign as [tex]\( q_1 \)[/tex]. Therefore, [tex]\( q_2 \)[/tex] is also negative.
The value of the second charge [tex]\( q_2 \)[/tex] is:
[tex]\[ q_2 \approx -0.0529 \, \text{C} \][/tex]
Thus, the charge [tex]\( q_2 \)[/tex] is approximately [tex]\( -0.0529 \, \text{C} \)[/tex].
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges,
- [tex]\( k \)[/tex] is Coulomb’s constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex].
Given:
- [tex]\( q_1 = -0.00325 \, \text{C} \)[/tex]
- [tex]\( F = 48900 \, \text{N} \)[/tex]
- [tex]\( r = 5.62 \, \text{m} \)[/tex]
We need to solve for [tex]\( q_2 \)[/tex]. First, we rearrange Coulomb's Law to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ q_2 = \frac{48900 \cdot (5.62)^2}{8.99 \times 10^9 \cdot | -0.00325 |} \][/tex]
Evaluating the expression inside gives us:
[tex]\[ q_2 = \frac{48900 \cdot 31.5844}{8.99 \times 10^9 \cdot 0.00325} \][/tex]
Let's simplify this step-by-step:
1. Compute the numerator:
[tex]\[ 48900 \cdot 31.5844 \approx 1544642.76 \][/tex]
2. Compute the denominator:
[tex]\[ 8.99 \times 10^9 \cdot 0.00325 \approx 2.92175 \times 10^7 \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ q_2 = \frac{1544642.76}{2.92175 \times 10^7} \approx 0.05286137280739284 \][/tex]
Since the force is repelling and [tex]\( q_1 \)[/tex] is negative, [tex]\( q_2 \)[/tex] should have the same sign as [tex]\( q_1 \)[/tex]. Therefore, [tex]\( q_2 \)[/tex] is also negative.
The value of the second charge [tex]\( q_2 \)[/tex] is:
[tex]\[ q_2 \approx -0.0529 \, \text{C} \][/tex]
Thus, the charge [tex]\( q_2 \)[/tex] is approximately [tex]\( -0.0529 \, \text{C} \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.