IDNLearn.com: Your reliable source for finding precise answers. Get the information you need quickly and accurately with our reliable and thorough Q&A platform.
Sagot :
Sure, let's differentiate the given expression step-by-step.
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.