IDNLearn.com is your trusted platform for finding reliable answers. Our platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Sure, let’s go through each question step-by-step:
### Q4. Find the integral zeros of [tex]\(4x^3 + 20x^2 - x - 5\)[/tex].
To find the integral zeros (roots) of the polynomial [tex]\(4x^3 + 20x^2 - x - 5\)[/tex], we use the Rational Root Theorem. This theorem states that any potential rational root, expressed in simplified form [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] is a factor of the constant term [tex]\(-5\)[/tex] and [tex]\(q\)[/tex] is a factor of the leading coefficient [tex]\(4\)[/tex].
Factors of [tex]\(-5\)[/tex]: [tex]\(\pm 1, \pm 5\)[/tex]
Factors of [tex]\(4\)[/tex]: [tex]\(\pm 1, \pm 2, \pm 4\)[/tex]
Possible rational roots: [tex]\(\frac{\pm 1}{\pm 1}, \frac{\pm 5}{\pm 1}, \frac{\pm 1}{\pm 2}, \frac{\pm 5}{\pm 2}, \frac{\pm 1}{\pm 4}, \frac{\pm 5}{\pm 4}\)[/tex]
These simplify to the potential candidates: [tex]\(\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4}\)[/tex].
Testing these values, we find:
For [tex]\(x = 1\)[/tex],
[tex]\[4(1)^3 + 20(1)^2 - 1 - 5 = 4 + 20 - 1 - 5 = 18\][/tex]
For [tex]\(x = -1\)[/tex],
[tex]\[4(-1)^3 + 20(-1)^2 - (-1) - 5 = -4 + 20 + 1 - 5 = 12\][/tex]
Neither [tex]\(1\)[/tex] nor [tex]\(-1\)[/tex] are zeros. Upon further testing, we find that [tex]\(x = -\frac{1}{2}\)[/tex] satisfies the equation:
[tex]\[4\left(-\frac{1}{2}\right)^3 + 20\left(-\frac{1}{2}\right)^2 -\left(-\frac{1}{2}\right) -5 = -\frac{4}{8} + \frac{20}{4} + \frac{1}{2} - 5 = -\frac{1}{2} + 5 + \frac{1}{2} - 5 =0.\][/tex]
Therefore, the integral zero is [tex]\(\boxed{-\frac{1}{2}}\)[/tex].
### Q5. Show that the polynomial [tex]\(x^2 + 2x + 7\)[/tex] has no zeros.
To determine if [tex]\(x^2 + 2x + 7\)[/tex] has zeros, we calculate its discriminant. The discriminant ([tex]\(\Delta\)[/tex]) for a quadratic equation [tex]\(ax^2 + bx + c\)[/tex] is given by:
[tex]\[\Delta = b^2 - 4ac\][/tex]
For the given polynomial [tex]\(x^2 + 2x + 7\)[/tex], we have [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = 7\)[/tex].
[tex]\[\Delta = 2^2 - 4 \cdot 1 \cdot 7 = 4 - 28 = -24\][/tex]
Since the discriminant is less than zero ([tex]\(-24 < 0\)[/tex]), the quadratic equation has no real zeros. Hence, the polynomial [tex]\(x^2 + 2x + 7\)[/tex] has no zeros.
### Q6. Without actual division, prove that [tex]\(2x^4 - 5x^3 + 2x^2 - x + 2\)[/tex] is divisible by [tex]\(x^2 - 3x + 2\)[/tex].
First, factorize [tex]\(x^2 - 3x + 2\)[/tex]:
[tex]\[x^2 - 3x + 2 = (x-1)(x-2)\][/tex]
Now substitute [tex]\(x = 1\)[/tex] and [tex]\(x = 2\)[/tex] into [tex]\(2x^4 - 5x^3 + 2x^2 - x + 2\)[/tex] to show both satisfy the polynomial:
For [tex]\(x = 1\)[/tex]:
[tex]\[2(1)^4 - 5(1)^3 + 2(1)^2 - 1 + 2 = 2 - 5 + 2 - 1 + 2 = 0\][/tex]
For [tex]\(x = 2\)[/tex]:
[tex]\[2(2)^4 - 5(2)^3 + 2(2)^2 - 2 + 2 = 32 - 40 + 8 - 2 + 2 = 0\][/tex]
Since both values satisfy the polynomial, [tex]\(2x^4 - 5x^3 + 2x^2 - x + 2\)[/tex] is divisible by [tex]\(x^2 - 3x + 2\)[/tex].
### Q7. If the polynomial [tex]\(2x^3 - ax^2 + bx + 4\)[/tex] has [tex]\(x+1\)[/tex] as a factor and leaves remainder 4 when divided by [tex]\(2x+1\)[/tex], find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
Since [tex]\(x+1\)[/tex] is a factor, [tex]\(P(-1) = 0\)[/tex]:
[tex]\[2(-1)^3 - a(-1)^2 + b(-1) + 4 = 0\Rightarrow -2 - a - b + 4 = 0 \Rightarrow -a - b + 2 = 0 \Rightarrow a + b = 2 \][/tex]
Since the remainder when divided by [tex]\(2x+1\)[/tex] is 4, substitute [tex]\(x = -\frac{1}{2}\)[/tex]:
[tex]\[2\left(-\frac{1}{2}\right)^3 - a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + 4 = 4 \Rightarrow -\frac{2}{8} -\frac{a}{4} - \frac{b}{2} + 4 = 4 \Rightarrow -\frac{1}{4} - \frac{a}{4} - \frac{b}{2} + 4 = 4\Rightarrow - a-2b +1= 0\Rightarrow 4a=7b-4\Rightarrow 8a= 14b-8\][/tex]
Solving the system:
[tex]\[a + b = 2\\ 4a + 2b = 8.\][/tex]
Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are [tex]\(a=0\)[/tex] and [tex]\(b=2\ ). ### Q8. Factorise the polynomial \(x^4 + 2x^3 - 13x^2 - 14x + 24\)[/tex].
We use the Rational Root Theorem to find possible rational roots: [tex]\(\pm 1, \pm 2,\pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
Testing [tex]\(x = 2\)[/tex]:
[tex]\[2^4 + 2 \cdot 2^3 - 13 \cdot 2^2 - 14 \cdot 2 + 24 = 16 + 16 - 52 - 28 + 24 = 0\][/tex]
Thus, [tex]\(x = 2\)[/tex] is a root. Now perform synthetic division or polynomial division to factor [tex]\(x-2\)[/tex] out:
After performing polynomial division, the quotient is:
[tex]\[x^3 + 4x^2 - 5x - 12\][/tex]
Factorize the quotient to find remaining factors:
Testing [tex]\(x = -2\)[/tex]:
[tex]\[(-2)^3 +4(-2)^2 + 5(-2)-12=0\][/tex]
(Use synthetic division again - this factors into polynomial and we get [tex]\((x-2)(x^2-1)\]) \[x^2-(-xy\] Therefore the polynomial is \(x^4 + 2x^3 - 13 x^2 - 14 x + 24 =(x-2)(x \times x+)\)[/tex]
Thus, the fully factorised form of the polynomers \[(x^3)(x-12)
### Q4. Find the integral zeros of [tex]\(4x^3 + 20x^2 - x - 5\)[/tex].
To find the integral zeros (roots) of the polynomial [tex]\(4x^3 + 20x^2 - x - 5\)[/tex], we use the Rational Root Theorem. This theorem states that any potential rational root, expressed in simplified form [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] is a factor of the constant term [tex]\(-5\)[/tex] and [tex]\(q\)[/tex] is a factor of the leading coefficient [tex]\(4\)[/tex].
Factors of [tex]\(-5\)[/tex]: [tex]\(\pm 1, \pm 5\)[/tex]
Factors of [tex]\(4\)[/tex]: [tex]\(\pm 1, \pm 2, \pm 4\)[/tex]
Possible rational roots: [tex]\(\frac{\pm 1}{\pm 1}, \frac{\pm 5}{\pm 1}, \frac{\pm 1}{\pm 2}, \frac{\pm 5}{\pm 2}, \frac{\pm 1}{\pm 4}, \frac{\pm 5}{\pm 4}\)[/tex]
These simplify to the potential candidates: [tex]\(\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4}\)[/tex].
Testing these values, we find:
For [tex]\(x = 1\)[/tex],
[tex]\[4(1)^3 + 20(1)^2 - 1 - 5 = 4 + 20 - 1 - 5 = 18\][/tex]
For [tex]\(x = -1\)[/tex],
[tex]\[4(-1)^3 + 20(-1)^2 - (-1) - 5 = -4 + 20 + 1 - 5 = 12\][/tex]
Neither [tex]\(1\)[/tex] nor [tex]\(-1\)[/tex] are zeros. Upon further testing, we find that [tex]\(x = -\frac{1}{2}\)[/tex] satisfies the equation:
[tex]\[4\left(-\frac{1}{2}\right)^3 + 20\left(-\frac{1}{2}\right)^2 -\left(-\frac{1}{2}\right) -5 = -\frac{4}{8} + \frac{20}{4} + \frac{1}{2} - 5 = -\frac{1}{2} + 5 + \frac{1}{2} - 5 =0.\][/tex]
Therefore, the integral zero is [tex]\(\boxed{-\frac{1}{2}}\)[/tex].
### Q5. Show that the polynomial [tex]\(x^2 + 2x + 7\)[/tex] has no zeros.
To determine if [tex]\(x^2 + 2x + 7\)[/tex] has zeros, we calculate its discriminant. The discriminant ([tex]\(\Delta\)[/tex]) for a quadratic equation [tex]\(ax^2 + bx + c\)[/tex] is given by:
[tex]\[\Delta = b^2 - 4ac\][/tex]
For the given polynomial [tex]\(x^2 + 2x + 7\)[/tex], we have [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = 7\)[/tex].
[tex]\[\Delta = 2^2 - 4 \cdot 1 \cdot 7 = 4 - 28 = -24\][/tex]
Since the discriminant is less than zero ([tex]\(-24 < 0\)[/tex]), the quadratic equation has no real zeros. Hence, the polynomial [tex]\(x^2 + 2x + 7\)[/tex] has no zeros.
### Q6. Without actual division, prove that [tex]\(2x^4 - 5x^3 + 2x^2 - x + 2\)[/tex] is divisible by [tex]\(x^2 - 3x + 2\)[/tex].
First, factorize [tex]\(x^2 - 3x + 2\)[/tex]:
[tex]\[x^2 - 3x + 2 = (x-1)(x-2)\][/tex]
Now substitute [tex]\(x = 1\)[/tex] and [tex]\(x = 2\)[/tex] into [tex]\(2x^4 - 5x^3 + 2x^2 - x + 2\)[/tex] to show both satisfy the polynomial:
For [tex]\(x = 1\)[/tex]:
[tex]\[2(1)^4 - 5(1)^3 + 2(1)^2 - 1 + 2 = 2 - 5 + 2 - 1 + 2 = 0\][/tex]
For [tex]\(x = 2\)[/tex]:
[tex]\[2(2)^4 - 5(2)^3 + 2(2)^2 - 2 + 2 = 32 - 40 + 8 - 2 + 2 = 0\][/tex]
Since both values satisfy the polynomial, [tex]\(2x^4 - 5x^3 + 2x^2 - x + 2\)[/tex] is divisible by [tex]\(x^2 - 3x + 2\)[/tex].
### Q7. If the polynomial [tex]\(2x^3 - ax^2 + bx + 4\)[/tex] has [tex]\(x+1\)[/tex] as a factor and leaves remainder 4 when divided by [tex]\(2x+1\)[/tex], find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
Since [tex]\(x+1\)[/tex] is a factor, [tex]\(P(-1) = 0\)[/tex]:
[tex]\[2(-1)^3 - a(-1)^2 + b(-1) + 4 = 0\Rightarrow -2 - a - b + 4 = 0 \Rightarrow -a - b + 2 = 0 \Rightarrow a + b = 2 \][/tex]
Since the remainder when divided by [tex]\(2x+1\)[/tex] is 4, substitute [tex]\(x = -\frac{1}{2}\)[/tex]:
[tex]\[2\left(-\frac{1}{2}\right)^3 - a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + 4 = 4 \Rightarrow -\frac{2}{8} -\frac{a}{4} - \frac{b}{2} + 4 = 4 \Rightarrow -\frac{1}{4} - \frac{a}{4} - \frac{b}{2} + 4 = 4\Rightarrow - a-2b +1= 0\Rightarrow 4a=7b-4\Rightarrow 8a= 14b-8\][/tex]
Solving the system:
[tex]\[a + b = 2\\ 4a + 2b = 8.\][/tex]
Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are [tex]\(a=0\)[/tex] and [tex]\(b=2\ ). ### Q8. Factorise the polynomial \(x^4 + 2x^3 - 13x^2 - 14x + 24\)[/tex].
We use the Rational Root Theorem to find possible rational roots: [tex]\(\pm 1, \pm 2,\pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\)[/tex].
Testing [tex]\(x = 2\)[/tex]:
[tex]\[2^4 + 2 \cdot 2^3 - 13 \cdot 2^2 - 14 \cdot 2 + 24 = 16 + 16 - 52 - 28 + 24 = 0\][/tex]
Thus, [tex]\(x = 2\)[/tex] is a root. Now perform synthetic division or polynomial division to factor [tex]\(x-2\)[/tex] out:
After performing polynomial division, the quotient is:
[tex]\[x^3 + 4x^2 - 5x - 12\][/tex]
Factorize the quotient to find remaining factors:
Testing [tex]\(x = -2\)[/tex]:
[tex]\[(-2)^3 +4(-2)^2 + 5(-2)-12=0\][/tex]
(Use synthetic division again - this factors into polynomial and we get [tex]\((x-2)(x^2-1)\]) \[x^2-(-xy\] Therefore the polynomial is \(x^4 + 2x^3 - 13 x^2 - 14 x + 24 =(x-2)(x \times x+)\)[/tex]
Thus, the fully factorised form of the polynomers \[(x^3)(x-12)
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.