IDNLearn.com offers a reliable platform for finding accurate and timely answers. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
To identify the temperature for which the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] most accurately predicts the time spent cooling, we need to compare the predicted temperatures with the actual temperatures at given time points.
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes) } t & \text{Oven temperature (degrees Fahrenheit)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]
First, we calculate the predicted temperatures using the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] and evaluate the absolute differences between the predicted and actual temperatures at each time point.
1. At [tex]\( t = 5 \)[/tex]:
- Predicted temperature [tex]\( f(5) = 349.2 \cdot (0.98)^5 \approx 314.35085775744005 \)[/tex]
- Actual temperature = 315
- Difference = [tex]\( |314.35085775744005 - 315| \approx 0.6491422425599467 \)[/tex]
2. At [tex]\( t = 10 \)[/tex]:
- Predicted temperature [tex]\( f(10) = 349.2 \cdot (0.98)^{10} \approx 284.6781758348687 \)[/tex]
- Actual temperature = 285
- Difference = [tex]\( |284.6781758348687 - 285| \approx 0.32182416513131784 \)[/tex]
3. At [tex]\( t = 15 \)[/tex]:
- Predicted temperature [tex]\( f(15) = 349.2 \cdot (0.98)^{15} \approx 257.908330643775 \)[/tex]
- Actual temperature = 260
- Difference = [tex]\( |257.908330643775 - 260| \approx 2.0916693562249975 \)[/tex]
4. At [tex]\( t = 20 \)[/tex]:
- Predicted temperature [tex]\( f(20) = 349.2 \cdot (0.98)^{20} \approx 233.1287037368789 \)[/tex]
- Actual temperature = 235
- Difference = [tex]\( |233.1287037368789 - 235| \approx 1.8712962631211099 \)[/tex]
5. At [tex]\( t = 25 \)[/tex]:
- Predicted temperature [tex]\( f(25) = 349.2 \cdot (0.98)^{25} \approx 209.2701163612093 \)[/tex]
- Actual temperature = 210
- Difference = [tex]\( |209.2701163612093 - 210| \approx 0.7298836387907102 \)[/tex]
Next, we compare these differences to determine the smallest difference, which signifies the most accurate prediction by the model.
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Absolute Difference} \\ \hline 5 & 0.6491422425599467 \\ \hline 10 & 0.32182416513131784 \\ \hline 15 & 2.0916693562249975 \\ \hline 20 & 1.8712962631211099 \\ \hline 25 & 0.7298836387907102 \\ \hline \end{array} \][/tex]
The smallest absolute difference is at [tex]\( t = 10 \)[/tex] minutes, with a difference of approximately [tex]\( 0.32182416513131784 \)[/tex]. The actual temperature at this time is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Thus, the temperature for which the model most accurately predicts the time spent cooling is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Given data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes) } t & \text{Oven temperature (degrees Fahrenheit)} \\ \hline 5 & 315 \\ \hline 10 & 285 \\ \hline 15 & 260 \\ \hline 20 & 235 \\ \hline 25 & 210 \\ \hline \end{array} \][/tex]
First, we calculate the predicted temperatures using the model [tex]\( f(t) = 349.2 \cdot (0.98)^t \)[/tex] and evaluate the absolute differences between the predicted and actual temperatures at each time point.
1. At [tex]\( t = 5 \)[/tex]:
- Predicted temperature [tex]\( f(5) = 349.2 \cdot (0.98)^5 \approx 314.35085775744005 \)[/tex]
- Actual temperature = 315
- Difference = [tex]\( |314.35085775744005 - 315| \approx 0.6491422425599467 \)[/tex]
2. At [tex]\( t = 10 \)[/tex]:
- Predicted temperature [tex]\( f(10) = 349.2 \cdot (0.98)^{10} \approx 284.6781758348687 \)[/tex]
- Actual temperature = 285
- Difference = [tex]\( |284.6781758348687 - 285| \approx 0.32182416513131784 \)[/tex]
3. At [tex]\( t = 15 \)[/tex]:
- Predicted temperature [tex]\( f(15) = 349.2 \cdot (0.98)^{15} \approx 257.908330643775 \)[/tex]
- Actual temperature = 260
- Difference = [tex]\( |257.908330643775 - 260| \approx 2.0916693562249975 \)[/tex]
4. At [tex]\( t = 20 \)[/tex]:
- Predicted temperature [tex]\( f(20) = 349.2 \cdot (0.98)^{20} \approx 233.1287037368789 \)[/tex]
- Actual temperature = 235
- Difference = [tex]\( |233.1287037368789 - 235| \approx 1.8712962631211099 \)[/tex]
5. At [tex]\( t = 25 \)[/tex]:
- Predicted temperature [tex]\( f(25) = 349.2 \cdot (0.98)^{25} \approx 209.2701163612093 \)[/tex]
- Actual temperature = 210
- Difference = [tex]\( |209.2701163612093 - 210| \approx 0.7298836387907102 \)[/tex]
Next, we compare these differences to determine the smallest difference, which signifies the most accurate prediction by the model.
[tex]\[ \begin{array}{|c|c|} \hline \text{Time (minutes)} & \text{Absolute Difference} \\ \hline 5 & 0.6491422425599467 \\ \hline 10 & 0.32182416513131784 \\ \hline 15 & 2.0916693562249975 \\ \hline 20 & 1.8712962631211099 \\ \hline 25 & 0.7298836387907102 \\ \hline \end{array} \][/tex]
The smallest absolute difference is at [tex]\( t = 10 \)[/tex] minutes, with a difference of approximately [tex]\( 0.32182416513131784 \)[/tex]. The actual temperature at this time is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Thus, the temperature for which the model most accurately predicts the time spent cooling is [tex]\( 285 \)[/tex] degrees Fahrenheit.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.