Get the best answers to your questions with the help of IDNLearn.com's experts. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.
Sagot :
To determine the minimum stopping distance for a car moving at a different speed, we need to understand the relationship between speed and stopping distance.
Given:
- Initial speed ([tex]\( v_1 \)[/tex]) = 36 km/hr
- Initial stopping distance ([tex]\( d_1 \)[/tex]) = 2 meters
- New speed ([tex]\( v_2 \)[/tex]) = 72 km/hr
First, let's convert the speeds from kilometers per hour (km/hr) to meters per second (m/s) because we want to be consistent with the units for distance (meters) and time (seconds).
1. Convert the initial speed:
[tex]\[ v_1 = 36 \, \text{km/hr} \][/tex]
We know that:
[tex]\[ 1 \, \text{km/hr} = \frac{1000 \, \text{m}}{3600 \, \text{s}} = \frac{5}{18} \, \text{m/s} \][/tex]
So:
[tex]\[ v_1 = 36 \times \frac{5}{18} \, \text{m/s} = 10 \, \text{m/s} \][/tex]
2. Convert the new speed:
[tex]\[ v_2 = 72 \, \text{km/hr} \][/tex]
[tex]\[ v_2 = 72 \times \frac{5}{18} \, \text{m/s} = 20 \, \text{m/s} \][/tex]
Next, we use the fact that the stopping distance is proportional to the square of the speed. This can be expressed as:
[tex]\[ d \propto v^2 \][/tex]
So, we set up a proportion:
[tex]\[ \frac{d_2}{d_1} = \left( \frac{v_2}{v_1} \right)^2 \][/tex]
We know:
[tex]\[ d_1 = 2 \, \text{m} \][/tex]
[tex]\[ v_1 = 10 \, \text{m/s} \][/tex]
[tex]\[ v_2 = 20 \, \text{m/s} \][/tex]
Plug these values into the proportion:
[tex]\[ \frac{d_2}{2} = \left( \frac{20}{10} \right)^2 \][/tex]
Simplify the right side:
[tex]\[ \frac{d_2}{2} = 2^2 \][/tex]
[tex]\[ \frac{d_2}{2} = 4 \][/tex]
Now, solve for [tex]\(d_2\)[/tex]:
[tex]\[ d_2 = 4 \times 2 \][/tex]
[tex]\[ d_2 = 8 \, \text{m} \][/tex]
Therefore, the minimum stopping distance when the car is moving at 72 km/hr is:
[tex]\[ \boxed{8 \, \text{meters}} \][/tex]
Given:
- Initial speed ([tex]\( v_1 \)[/tex]) = 36 km/hr
- Initial stopping distance ([tex]\( d_1 \)[/tex]) = 2 meters
- New speed ([tex]\( v_2 \)[/tex]) = 72 km/hr
First, let's convert the speeds from kilometers per hour (km/hr) to meters per second (m/s) because we want to be consistent with the units for distance (meters) and time (seconds).
1. Convert the initial speed:
[tex]\[ v_1 = 36 \, \text{km/hr} \][/tex]
We know that:
[tex]\[ 1 \, \text{km/hr} = \frac{1000 \, \text{m}}{3600 \, \text{s}} = \frac{5}{18} \, \text{m/s} \][/tex]
So:
[tex]\[ v_1 = 36 \times \frac{5}{18} \, \text{m/s} = 10 \, \text{m/s} \][/tex]
2. Convert the new speed:
[tex]\[ v_2 = 72 \, \text{km/hr} \][/tex]
[tex]\[ v_2 = 72 \times \frac{5}{18} \, \text{m/s} = 20 \, \text{m/s} \][/tex]
Next, we use the fact that the stopping distance is proportional to the square of the speed. This can be expressed as:
[tex]\[ d \propto v^2 \][/tex]
So, we set up a proportion:
[tex]\[ \frac{d_2}{d_1} = \left( \frac{v_2}{v_1} \right)^2 \][/tex]
We know:
[tex]\[ d_1 = 2 \, \text{m} \][/tex]
[tex]\[ v_1 = 10 \, \text{m/s} \][/tex]
[tex]\[ v_2 = 20 \, \text{m/s} \][/tex]
Plug these values into the proportion:
[tex]\[ \frac{d_2}{2} = \left( \frac{20}{10} \right)^2 \][/tex]
Simplify the right side:
[tex]\[ \frac{d_2}{2} = 2^2 \][/tex]
[tex]\[ \frac{d_2}{2} = 4 \][/tex]
Now, solve for [tex]\(d_2\)[/tex]:
[tex]\[ d_2 = 4 \times 2 \][/tex]
[tex]\[ d_2 = 8 \, \text{m} \][/tex]
Therefore, the minimum stopping distance when the car is moving at 72 km/hr is:
[tex]\[ \boxed{8 \, \text{meters}} \][/tex]
Your engagement is important to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.