From everyday questions to specialized queries, IDNLearn.com has the answers. Our Q&A platform offers reliable and thorough answers to help you make informed decisions quickly and easily.
Sagot :
To determine the enthalpy change of the reaction ([tex]\( \Delta H_{\text{rxn}} \)[/tex]) for the dissociation of NH[tex]\(_4\)[/tex]Br in water, follow these steps:
### Step 1: Find the Mass of the Solution
The total mass of the solution is the sum of the mass of NH[tex]\(_4\)[/tex]Br and the mass of water.
- Mass of NH[tex]\(_4\)[/tex]Br: [tex]\( 4.0 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 46.0 \, \text{g} \)[/tex]
[tex]\[ \text{Mass of solution} = 4.0 \, \text{g} + 46.0 \, \text{g} = 50.0 \, \text{g} \][/tex]
### Step 2: Calculate the Change in Temperature ([tex]\( \Delta T \)[/tex])
The change in temperature is the final temperature minus the initial temperature.
- Initial temperature: [tex]\( 21.3^\circ \text{C} \)[/tex]
- Final temperature: [tex]\( 18.0^\circ \text{C} \)[/tex]
[tex]\[ \Delta T = 18.0^\circ \text{C} - 21.3^\circ \text{C} = -3.3^\circ \text{C} \][/tex]
### Step 3: Calculate the Heat Absorbed/Released by the Solution
The heat ([tex]\( q \)[/tex]) absorbed or released by the solution is given by:
[tex]\[ q_{\text{solution}} = \text{mass of solution} \times \text{specific heat of the solution} \times \Delta T \][/tex]
- Specific heat of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \text{C} \)[/tex]
- Mass of solution: [tex]\( 50.0 \, \text{g} \)[/tex]
- [tex]\( \Delta T \)[/tex]: [tex]\( -3.3^\circ \text{C} \)[/tex]
[tex]\[ q_{\text{solution}} = 50.0 \, \text{g} \times 4.18 \, \text{J/g}^\circ \text{C} \times (-3.3^\circ \text{C}) = -689.7 \, \text{J} \][/tex]
### Step 4: Calculate the Heat Absorbed/Released by the Calorimeter
The heat ([tex]\( q \)[/tex]) absorbed or released by the calorimeter is given by:
[tex]\[ q_{\text{calorimeter}} = \text{heat capacity of calorimeter} \times \Delta T \][/tex]
- Heat capacity of calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 5.7 \, \text{J/}^\circ \text{C} \)[/tex]
- [tex]\( \Delta T \)[/tex]: [tex]\( -3.3^\circ \text{C} \)[/tex]
[tex]\[ q_{\text{calorimeter}} = 5.7 \, \text{J/}^\circ \text{C} \times (-3.3^\circ \text{C}) = -18.81 \, \text{J} \][/tex]
### Step 5: Calculate the Total Heat Absorbed/Released
The total heat ([tex]\( q_{\text{total}} \)[/tex]) absorbed or released by the system is the sum of the heat by the solution and the calorimeter.
[tex]\[ q_{\text{total}} = q_{\text{solution}} + q_{\text{calorimeter}} \][/tex]
[tex]\[ q_{\text{total}} = -689.7 \, \text{J} + (-18.81 \, \text{J}) = -708.51 \, \text{J} \][/tex]
Convert [tex]\( q_{\text{total}} \)[/tex] from J to kJ.
[tex]\[ q_{\text{total}} = -708.51 \, \text{J} \times \left( \frac{1 \, \text{kJ}}{1000 \, \text{J}} \right) = -0.70851 \, \text{kJ} \][/tex]
### Step 6: Calculate the Moles of NH[tex]\(_4\)[/tex]Br
First, find the molar mass of NH[tex]\(_4\)[/tex]Br.
- Molar mass of NH[tex]\(_4\)[/tex]Br: [tex]\( 97.94 \, \text{g/mol} \)[/tex]
Determine the moles of NH[tex]\(_4\)[/tex]Br used:
[tex]\[ \text{Moles of NH}_4\text{Br} = \frac{\text{Mass of NH}_4\text{Br}}{\text{Molar Mass of NH}_4\text{Br}} \][/tex]
[tex]\[ \text{Moles of NH}_4\text{Br} = \frac{4.0 \, \text{g}}{97.94 \, \text{g/mol}} = 0.040841331 \, \text{mol} \][/tex]
### Step 7: Determine the Enthalpy Change ([tex]\( \Delta H_{\text{rxn}} \)[/tex])
Finally, calculate the enthalpy change per mole of NH[tex]\(_4\)[/tex]Br.
[tex]\[ \Delta H_{\text{rxn}} = \frac{q_{\text{total}}}{\text{moles of NH}_4\text{Br}} \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = \frac{-0.70851 \, \text{kJ}}{0.040841331 \, \text{mol}} = -17.34786735 \, \text{kJ/mol} \][/tex]
### Final Answer
[tex]\[ \Delta H_{\text{rxn}} = -17.35 \, \text{kJ/mol} \][/tex]
The enthalpy change of the reaction is [tex]\( -17.35 \, \text{kJ/mol} \)[/tex]. This indicates the process is exothermic, as indicated by the negative sign.
### Step 1: Find the Mass of the Solution
The total mass of the solution is the sum of the mass of NH[tex]\(_4\)[/tex]Br and the mass of water.
- Mass of NH[tex]\(_4\)[/tex]Br: [tex]\( 4.0 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 46.0 \, \text{g} \)[/tex]
[tex]\[ \text{Mass of solution} = 4.0 \, \text{g} + 46.0 \, \text{g} = 50.0 \, \text{g} \][/tex]
### Step 2: Calculate the Change in Temperature ([tex]\( \Delta T \)[/tex])
The change in temperature is the final temperature minus the initial temperature.
- Initial temperature: [tex]\( 21.3^\circ \text{C} \)[/tex]
- Final temperature: [tex]\( 18.0^\circ \text{C} \)[/tex]
[tex]\[ \Delta T = 18.0^\circ \text{C} - 21.3^\circ \text{C} = -3.3^\circ \text{C} \][/tex]
### Step 3: Calculate the Heat Absorbed/Released by the Solution
The heat ([tex]\( q \)[/tex]) absorbed or released by the solution is given by:
[tex]\[ q_{\text{solution}} = \text{mass of solution} \times \text{specific heat of the solution} \times \Delta T \][/tex]
- Specific heat of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \text{C} \)[/tex]
- Mass of solution: [tex]\( 50.0 \, \text{g} \)[/tex]
- [tex]\( \Delta T \)[/tex]: [tex]\( -3.3^\circ \text{C} \)[/tex]
[tex]\[ q_{\text{solution}} = 50.0 \, \text{g} \times 4.18 \, \text{J/g}^\circ \text{C} \times (-3.3^\circ \text{C}) = -689.7 \, \text{J} \][/tex]
### Step 4: Calculate the Heat Absorbed/Released by the Calorimeter
The heat ([tex]\( q \)[/tex]) absorbed or released by the calorimeter is given by:
[tex]\[ q_{\text{calorimeter}} = \text{heat capacity of calorimeter} \times \Delta T \][/tex]
- Heat capacity of calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 5.7 \, \text{J/}^\circ \text{C} \)[/tex]
- [tex]\( \Delta T \)[/tex]: [tex]\( -3.3^\circ \text{C} \)[/tex]
[tex]\[ q_{\text{calorimeter}} = 5.7 \, \text{J/}^\circ \text{C} \times (-3.3^\circ \text{C}) = -18.81 \, \text{J} \][/tex]
### Step 5: Calculate the Total Heat Absorbed/Released
The total heat ([tex]\( q_{\text{total}} \)[/tex]) absorbed or released by the system is the sum of the heat by the solution and the calorimeter.
[tex]\[ q_{\text{total}} = q_{\text{solution}} + q_{\text{calorimeter}} \][/tex]
[tex]\[ q_{\text{total}} = -689.7 \, \text{J} + (-18.81 \, \text{J}) = -708.51 \, \text{J} \][/tex]
Convert [tex]\( q_{\text{total}} \)[/tex] from J to kJ.
[tex]\[ q_{\text{total}} = -708.51 \, \text{J} \times \left( \frac{1 \, \text{kJ}}{1000 \, \text{J}} \right) = -0.70851 \, \text{kJ} \][/tex]
### Step 6: Calculate the Moles of NH[tex]\(_4\)[/tex]Br
First, find the molar mass of NH[tex]\(_4\)[/tex]Br.
- Molar mass of NH[tex]\(_4\)[/tex]Br: [tex]\( 97.94 \, \text{g/mol} \)[/tex]
Determine the moles of NH[tex]\(_4\)[/tex]Br used:
[tex]\[ \text{Moles of NH}_4\text{Br} = \frac{\text{Mass of NH}_4\text{Br}}{\text{Molar Mass of NH}_4\text{Br}} \][/tex]
[tex]\[ \text{Moles of NH}_4\text{Br} = \frac{4.0 \, \text{g}}{97.94 \, \text{g/mol}} = 0.040841331 \, \text{mol} \][/tex]
### Step 7: Determine the Enthalpy Change ([tex]\( \Delta H_{\text{rxn}} \)[/tex])
Finally, calculate the enthalpy change per mole of NH[tex]\(_4\)[/tex]Br.
[tex]\[ \Delta H_{\text{rxn}} = \frac{q_{\text{total}}}{\text{moles of NH}_4\text{Br}} \][/tex]
[tex]\[ \Delta H_{\text{rxn}} = \frac{-0.70851 \, \text{kJ}}{0.040841331 \, \text{mol}} = -17.34786735 \, \text{kJ/mol} \][/tex]
### Final Answer
[tex]\[ \Delta H_{\text{rxn}} = -17.35 \, \text{kJ/mol} \][/tex]
The enthalpy change of the reaction is [tex]\( -17.35 \, \text{kJ/mol} \)[/tex]. This indicates the process is exothermic, as indicated by the negative sign.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.