Get the answers you've been searching for with IDNLearn.com. Get the information you need from our experts, who provide reliable and detailed answers to all your questions.

What temperature increase would be expected if the same [tex]$1.200 \, \text{g}$[/tex] sample of benzoic acid were combusted when the calorimeter contained [tex]$1.00 \, \text{kg}$[/tex] of water?

[tex]\[
\begin{aligned}
q_{\text{rxn}} & = -31.66 \, \text{kJ} \\
C_{\text{cal (dry)}} & = 2.39 \, \text{kJ/}^{\circ}\text{C} \\
-q_{\text{rxn}} & = q_{\text{cal}} = \left[ C_{\text{cal, dry}} (\Delta T) + C_{\text{cal, } H_2O} (\Delta T) \right] \\
q_{\text{cal}} & = \left[ C_{\text{cal, dry}} (\Delta T) + (m_{H_2O}) (c_{H_2O}) (\Delta T) \right]
\end{aligned}
\][/tex]

Combine like terms using [tex] \Delta T [/tex]:

[tex]\[
31.66 \, \text{kJ} = \left[ 2.39 \, \text{kJ/}^{\circ}\text{C} + (1.00 \, \text{kg} \times 4.184 \, \text{kJ/kg}^{\circ}\text{C}) \right] (\Delta T)
\][/tex]

[tex]\[
\Delta T = [?] \, ^{\circ}\text{C}
\][/tex]


Sagot :

Sure, let's solve this step-by-step.

Given:
[tex]\[ q_{\text{rxn}} = -31.66 \, \text{kJ} \][/tex]
[tex]\[ C_{\text{cal, dry}} = 2.39 \, \text{kJ}/{^\circ}\text{C} \][/tex]
[tex]\[ m_{\text{H}_2\text{O}} = 1.00 \, \text{kg} \][/tex]
[tex]\[ c_{\text{H}_2\text{O}} = 4.184 \, \text{kJ}/(\text{kg} \cdot {^\circ}\text{C}) \][/tex]

We need to calculate the temperature increase [tex]\( \Delta T \)[/tex] expected when the sample of benzoic acid is combusted in the calorimeter that contains 1.00 kg of water.

First, let's express the combined heat capacity term:

[tex]\[ C_{\text{total}} = C_{\text{cal, dry}} + (m_{\text{H}_2\text{O}} \cdot c_{\text{H}_2\text{O}}) \][/tex]

Substituting the given values:

[tex]\[ C_{\text{total}} = 2.39 \, \text{kJ}/{^\circ}\text{C} + (1.00 \, \text{kg} \cdot 4.184 \, \text{kJ}/(\text{kg} \cdot {^\circ}\text{C})) \][/tex]

[tex]\[ C_{\text{total}} = 2.39 \, \text{kJ}/{^\circ}\text{C} + 4.184 \, \text{kJ}/{^\circ}\text{C} \][/tex]

[tex]\[ C_{\text{total}} = 6.574 \, \text{kJ}/{^\circ}\text{C} \][/tex]

Now, using the energy conservation equation, we know that the heat released by the reaction [tex]\( q_{\text{rxn}} \)[/tex] will be absorbed by the calorimeter and the water, causing a temperature change [tex]\(\Delta T\)[/tex]:

[tex]\[ q_{\text{cal}} = C_{\text{total}} \cdot \Delta T \][/tex]

Since [tex]\( q_{\text{cal}} = -q_{\text{rxn}} \)[/tex]:

[tex]\[ 31.66 \, \text{kJ} = 6.574 \, \text{kJ}/{^\circ}\text{C} \cdot \Delta T \][/tex]

Solving for [tex]\(\Delta T\)[/tex]:

[tex]\[ \Delta T = \frac{31.66 \, \text{kJ}}{6.574 \, \text{kJ}/{^\circ}\text{C}} \][/tex]

[tex]\[ \Delta T \approx 4.816 \, {^\circ}\text{C} \][/tex]

Thus, the expected temperature increase [tex]\(\Delta T\)[/tex] would be approximately 4.816°C.