Discover how IDNLearn.com can help you learn and grow with its extensive Q&A platform. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
To determine how Reaction 1 is manipulated to match the overall reaction using Hess's Law, let's go through each given reaction and see how they contribute to forming the desired reaction:
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
The goal is to find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
First, consider the desired products and reactants in the goal reaction:
- We need 2 moles of [tex]\(CO_2\)[/tex].
- We need 3 moles of [tex]\(H_2O\)[/tex].
- We start with [tex]\(C_2H_5OH\)[/tex] and [tex]\(O_2\)[/tex].
To achieve this, let's rearrange the given reactions:
Step-by-step breakdown:
1. Start with Reaction 3, which involves [tex]\(C_2H_5OH\)[/tex]:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
- This reaction must be reversed to match the [tex]\(C_2H_5OH\)[/tex] on the reactant side:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Use Reaction 1 to form [tex]\(CO_2\)[/tex]:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
- We need 2 moles of [tex]\(CO_2\)[/tex], so Reaction 1 is used twice:
[tex]\[ 2(C + O_2 \rightarrow CO_2) \Rightarrow 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 = -788 \, \text{kJ} \][/tex]
3. Use Reaction 2 to form [tex]\(H_2O\)[/tex]:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Combine all the manipulated reactions:
1. [tex]\( 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \)[/tex] (reversed Reaction 3)
2. [tex]\( 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \)[/tex] (twice Reaction 1)
3. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
Note that these combinations produce:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Thus, Reaction 1 is used as is without any change to match the overall reaction. Therefore, the correct manipulation of Reaction 1 is:
- It remains the same.
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
The goal is to find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
First, consider the desired products and reactants in the goal reaction:
- We need 2 moles of [tex]\(CO_2\)[/tex].
- We need 3 moles of [tex]\(H_2O\)[/tex].
- We start with [tex]\(C_2H_5OH\)[/tex] and [tex]\(O_2\)[/tex].
To achieve this, let's rearrange the given reactions:
Step-by-step breakdown:
1. Start with Reaction 3, which involves [tex]\(C_2H_5OH\)[/tex]:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
- This reaction must be reversed to match the [tex]\(C_2H_5OH\)[/tex] on the reactant side:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Use Reaction 1 to form [tex]\(CO_2\)[/tex]:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
- We need 2 moles of [tex]\(CO_2\)[/tex], so Reaction 1 is used twice:
[tex]\[ 2(C + O_2 \rightarrow CO_2) \Rightarrow 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 = -788 \, \text{kJ} \][/tex]
3. Use Reaction 2 to form [tex]\(H_2O\)[/tex]:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Combine all the manipulated reactions:
1. [tex]\( 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \)[/tex] (reversed Reaction 3)
2. [tex]\( 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \)[/tex] (twice Reaction 1)
3. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
Note that these combinations produce:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Thus, Reaction 1 is used as is without any change to match the overall reaction. Therefore, the correct manipulation of Reaction 1 is:
- It remains the same.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.