Join IDNLearn.com and start getting the answers you've been searching for. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.

Calculate [tex]\(\Delta S_{\text{rxn}}\)[/tex] for the equation below. (Round to the nearest whole number.)

[tex]\[
\begin{array}{l}
4 \text{NH}_3(g) + 5 \text{O}_2(g) \rightarrow 4 \text{NO}(g) + 6 \text{H}_2\text{O}(g) \\
S_{\text{NH}_3} = 192.8 \, \text{J} / \text{mol} \cdot \text{K} \\
S_{\text{O}_2} = 205.0 \, \text{J} / \text{mol} \cdot \text{K} \\
S_{\text{H}_2\text{O}} = 188.83 \, \text{J} / \text{mol} \cdot \text{K} \\
S_{\text{NO}} = 210.8 \, \text{J} / \text{mol} \cdot \text{K} \\
\Delta S_{\text{rxn}} = \square \, \text{J} / \text{K}
\end{array}
\][/tex]


Sagot :

To calculate the change in standard entropy, [tex]\(\Delta S_{r}\)[/tex], for the reaction

[tex]\[4 \text{NH}_3(g) + 5 \text{O}_2(g) \rightarrow 4 \text{NO}(g) + 6 \text{H}_2\text{O}(g)\][/tex]

given the standard molar entropies:
- [tex]\( S_{\text{NH}_3} = 192.8 \ \text{J/mol K} \)[/tex]
- [tex]\( S_{\text{O}_2} = 205.0 \ \text{J/mol K} \)[/tex]
- [tex]\( S_{\text{H}_2\text{O}} = 188.83 \ \text{J/mol K} \)[/tex]
- [tex]\( S_{\text{NO}} = 210.8 \ \text{J/mol K} \)[/tex],

we follow these steps:

1. Identify the coefficients of each compound in the balanced equation:
- For [tex]\( \text{NH}_3 \)[/tex]: coefficient is 4
- For [tex]\( \text{O}_2 \)[/tex]: coefficient is 5
- For [tex]\( \text{NO} \)[/tex]: coefficient is 4
- For [tex]\( \text{H}_2\text{O} \)[/tex]: coefficient is 6

2. Calculate the total standard entropy of the reactants:
[tex]\[ S_{\text{reactants}} = ( \text{coefficient of } \text{NH}_3 \times S_{\text{NH}_3} ) + ( \text{coefficient of } \text{O}_2 \times S_{\text{O}_2} ) \][/tex]
Substituting the values, we get:
[tex]\[ S_{\text{reactants}} = (4 \times 192.8) + (5 \times 205.0) = 771.2 + 1025.0 = 1796.2 \ \text{J/K} \][/tex]

3. Calculate the total standard entropy of the products:
[tex]\[ S_{\text{products}} = ( \text{coefficient of } \text{NO} \times S_{\text{NO}} ) + ( \text{coefficient of } \text{H}_2\text{O} \times S_{\text{H}_2\text{O}} ) \][/tex]
Substituting the values, we get:
[tex]\[ S_{\text{products}} = (4 \times 210.8) + (6 \times 188.83) = 843.2 + 1132.98 = 1976.18 \ \text{J/K} \][/tex]

4. Calculate the change in standard entropy ([tex]\(\Delta S_{r}\)[/tex]):
[tex]\[ \Delta S_{r} = S_{\text{products}} - S_{\text{reactants}} \][/tex]
Substituting the values calculated:
[tex]\[ \Delta S_{r} = 1976.18 - 1796.2 = 179.98 \ \text{J/K} \][/tex]

5. Round the final result to the nearest whole number:
[tex]\[ \Delta S_{r} \approx 180 \ \text{J/K} \][/tex]

Therefore, the change in standard entropy [tex]\(\Delta S_{r}\)[/tex] for the given reaction is approximately [tex]\(\boxed{180 \ \text{J/K}}\)[/tex].