IDNLearn.com offers expert insights and community wisdom to answer your queries. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
Let's solve each of the integrals step-by-step.
### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.
Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:
[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]
Notice that our integrand almost fits this form, but we need to adjust it:
[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]
However:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:
Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
So, the final answer is:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]
First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:
[tex]\[ 4 \cosh^2(t) \, dt \][/tex]
These substitutions convert the integral:
[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]
Substituting these:
[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]
We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]
[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]
Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]
Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]
So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]
First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]
Setting the expression accordingly:
[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]
To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]
Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]
Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]
Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]
Considering each integral terms:
Therefore;
[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]
to eventually produce simplified resultant=
Thus, finally integrating each,
[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]
Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.
Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:
[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]
Notice that our integrand almost fits this form, but we need to adjust it:
[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]
However:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]
Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:
Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
So, the final answer is:
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]
### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]
First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:
[tex]\[ 4 \cosh^2(t) \, dt \][/tex]
These substitutions convert the integral:
[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]
Substituting these:
[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]
We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]
[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]
Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]
Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]
So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]
First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]
Setting the expression accordingly:
[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]
To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]
Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]
Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]
Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]
Considering each integral terms:
Therefore;
[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]
to eventually produce simplified resultant=
Thus, finally integrating each,
[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]
Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.