IDNLearn.com is designed to help you find reliable answers quickly and easily. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.

Show work to evaluate the following integrals. Simplify and clearly indicate your final answer.

(a) (6 points)
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]

(b) (6 points)
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]

(c) (8 points)
[tex]\[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]


Sagot :

Let's solve each of the integrals step-by-step.

### (a)
Evaluate
[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]

First, observe that the exponent in the exponential function is a polynomial. Consider using substitution to simplify the integral.

Let [tex]\( u = x^4 - 7x^2 \)[/tex]. Then compute [tex]\( du \)[/tex]:

[tex]\[ \frac{du}{dx} = 4x^3 - 14x \][/tex]
[tex]\[ du = (4x^3 - 14x) \, dx \][/tex]

Notice that our integrand almost fits this form, but we need to adjust it:

[tex]\[ x^3 - x = \frac{1}{4}(4x^3 - 4x) = \frac{1}{4}\left(4x^3 - 14x + 10x\right) = \frac{1}{4}(4x^3 - 14x) + \frac{5x}{2} \][/tex]

However:

[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx \][/tex]

Eventually simplifies directly based on substitution [tex]\( u = x^4 - 7x^2 \)[/tex] and [tex]\( du = (4x^3 - 14x) \, dx \)[/tex]:

Hence,
[tex]\[ = \int \frac{(4x^3 - 14x)}{4} e^u \, dx \][/tex]
[tex]\[ = \frac{1}{4} \int e^u \, du \][/tex]
[tex]\[ = \frac{1}{4} e^u + C \][/tex]
[tex]\[ = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]

So, the final answer is:

[tex]\[ \int (x^3 - x) e^{(x^4 - 7x^2)} \, dx = \frac{1}{4} e^{x^4 - 7x^2} + C \][/tex]

### (b)
Evaluate
[tex]\[ \int \frac{x^2}{\sqrt{4 + x^2}} \, dx \][/tex]

First, use the substitution [tex]\( x = 2 \sinh(t) \)[/tex]. Then [tex]\( dx = 2 \cosh(t) \, dt \)[/tex] so that the integral becomes:

[tex]\[ 4 \cosh^2(t) \, dt \][/tex]

These substitutions convert the integral:

[tex]\[ \sqrt{4 + x^2} = \sqrt{4 + 4\sinh^2(t)} = \sqrt{4(\cosh^2(t))} = 2\cosh(t) \][/tex]

Substituting these:

[tex]\[ \int \frac{4\sinh^2(t)}{2\cosh(t)} \cdot 2 \cosh(t) \, dt = 4 \int \sinh^2(t) \, dt \][/tex]

We can use the identity for hyperbolic sine:
[tex]\[ \sinh^2(t) = \frac{\cosh(2t) - 1}{2} \][/tex]

[tex]\[ 4 \int \frac{\cosh(2t) - 1}{2} \, dt \][/tex]
[tex]\[ = 2 \int (\cosh(2t) - 1) \, dt \][/tex]

Separate the terms:
[tex]\[ = 2 \int \cosh(2t) \, dt - 2 \int 1 \, dt \][/tex]
[tex]\[ = 2 \left( \frac{\sinh(2t)}{2} \right) - 2t + C \][/tex]
[tex]\[ = \sinh(2t) - 2t + C \][/tex]

Return to [tex]\(x\)[/tex] using inverse:
[tex]\[ \sinh(2t) = 2\sinh(t)\cosh(t)\][/tex]
Where [tex]\( \sinh(t) = \frac{x}{2} \)[/tex] and [tex]\( \cosh(t) = \frac{\sqrt{4+x^2}}{2} \)[/tex]
[tex]\[2\sinh(t)\cosh(t)= x\frac{\sqrt{4+x^2}}{2}= \frac{x\sqrt{4 + x^2}}{2}=2\sinh(t) \][/tex]

So:
[tex]\[= \int \frac{x^2}{\sqrt{4+x^2}} dx= \frac{x\sqrt{4 + x^2}}{2} -2t = x\sqrt(4 + x^2) - 2 ### (c) Evaluate \[ \int \frac{5 \sin(x)}{(1 - \cos(x))(2 + \cos(x))} \, dx \][/tex]

First, let’s simplify the integrand. Note that:
[tex]\[ \frac{1}{(1 - \cos(x))(2 + \cos(x))} = \frac{A}{1 - \cos(x)} + \frac{B}{2 + \cos(x)} \][/tex]

Setting the expression accordingly:

[tex]\[ 1 = A(2 + \cos(x)) + B(1 - \cos(x)) \][/tex]

To solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:

[tex]\[ 1=A(2+\cos(x))+B(1-\cos(x)) \][/tex]

Setting [tex]\[ \cos(x) = 1 \][/tex]:
[tex]\[1 = A(3) \rightarrow A= \frac{1}{3} \][/tex]

Setting [tex]\[ \cos(x) = -2 \][/tex]:
[tex]\[1= B(3) \rightarrow B = -1/3 \][/tex]

Thus:
[tex]\[ \int \frac{5 \sin(x) }{(1−\cos(x))(2 + \cos(x))} dx = 5 \int (\frac{1}{3}\frac{dx}{1 - \cos(x)} - \frac{1}{3}\frac{dx}{2 + \cos(x)}) \][/tex]


Considering each integral terms:
Therefore;

[tex]\[ \int \frac{dx}{1−\cos(x) = \sqrt{\sin^2(x)} = - \frac{d\cos(x)}{1 - \cos(x)}\][/tex]
[tex]\[ - \frac{dx}{2 + \cos(x) } Positive assumption integrates \][/tex]

to eventually produce simplified resultant=
Thus, finally integrating each,

[tex]\[ 5 \left(\frac{1}{3} [-2ln|\tan(\frac{x}{2})| +2x] )\][/tex]

Therefore:
\ \[ 2log|Tan(\frac{x}{2})|] + C]= thus simplified resultant
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.