Join the growing community of curious minds on IDNLearn.com and get the answers you need. Find reliable solutions to your questions quickly and easily with help from our experienced experts.
Sagot :
To predict the rate for Experiment 4, we need to determine the rate law for the reaction. The rate law has the general form:
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.