Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
To predict the rate for Experiment 4, we need to determine the rate law for the reaction. The rate law has the general form:
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
[tex]\[ \text{rate} = k \times [\text{NO}]^m \times [\text{Cl}_2]^n \][/tex]
where:
- [tex]\( k \)[/tex] is the rate constant,
- [tex]\( m \)[/tex] is the order of reaction with respect to NO,
- [tex]\( n \)[/tex] is the order of reaction with respect to Cl[tex]\(_2\)[/tex].
We can determine the values of [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( k \)[/tex] using the provided experimental data.
### Step-by-Step Solution
1. Determine the reaction order with respect to Cl[tex]\(_2\)[/tex] ( [tex]\( n \)[/tex] ):
Use data from Experiments 1 and 2, where NO concentration is constant and Cl[tex]\(_2\)[/tex] concentration varies.
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{NO}]_2}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_2}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{5.70}{0.63} = \left( \frac{0.20}{0.20} \right)^m \times \left( \frac{0.30}{0.10} \right)^n \][/tex]
Simplifying:
[tex]\[ 9 = 1 \times 3^n \][/tex]
Therefore:
[tex]\[ 9 = 3^n \implies n = 2 \][/tex]
2. Determine the reaction order with respect to NO ( [tex]\( m \)[/tex] ):
Use data from Experiments 1 and 3, where Cl[tex]\(_2\)[/tex] concentration is constant and NO concentration varies.
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}]_3}{[\text{NO}]_1} \right)^m \times \left( \frac{[\text{Cl}_2]_3}{[\text{Cl}_2]_1} \right)^n \][/tex]
Given:
[tex]\[ \frac{2.58}{0.63} = \left( \frac{0.80}{0.20} \right)^m \times \left( \frac{0.10}{0.10} \right)^2 \][/tex]
Simplifying:
[tex]\[ 4.1 = 4^m \times 1 \][/tex]
Therefore:
[tex]\[ 4.1 = 4^m \implies m = 1 \][/tex]
3. Calculate the rate constant ([tex]\( k \)[/tex]) using data from one experiment:
Using data from Experiment 1:
[tex]\[ \text{rate} = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
[tex]\[ 0.63 = k \times (0.20)^1 \times (0.10)^2 \][/tex]
Simplifying:
[tex]\[ 0.63 = k \times 0.20 \times 0.01 \][/tex]
[tex]\[ 0.63 = k \times 0.002 \][/tex]
Therefore:
[tex]\[ k = \frac{0.63}{0.002} = 315 \][/tex]
4. Predict the rate for Experiment 4:
Using the rate law:
[tex]\[ \text{rate}_4 = k \times [\text{NO}]^1 \times [\text{Cl}_2]^2 \][/tex]
Given concentrations for Experiment 4:
[tex]\[ [\text{NO}] = 0.40 \quad \text{and} \quad [\text{Cl}_2] = 0.20 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times (0.40)^1 \times (0.20)^2 \][/tex]
Calculating:
[tex]\[ \text{rate}_4 = 315 \times 0.40 \times 0.04 \][/tex]
[tex]\[ \text{rate}_4 = 315 \times 0.016 \][/tex]
[tex]\[ \text{rate}_4 = 5.04 \][/tex]
So, the predicted rate for Experiment 4 is:
[tex]\[ \boxed{5.04 \, \text{M/s}} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.