Get insightful responses to your questions quickly and easily on IDNLearn.com. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.
Sagot :
To expand the expression [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] around [tex]\(x=0\)[/tex], we can use a Maclaurin series. The Maclaurin series expansion of a function [tex]\(f(x)\)[/tex] around [tex]\(x = 0\)[/tex] is given by:
[tex]\[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots \][/tex]
Let's break down the expansion step by step.
1. Evaluate the function at [tex]\(x=0\)[/tex]:
[tex]\[ f(x) = \sqrt{\frac{1-x}{1+x}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1 \][/tex]
2. Find the first derivative and evaluate at [tex]\(x=0\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(\sqrt{\frac{1-x}{1+x}}\right) \][/tex]
Using the chain rule and quotient rule, we get:
[tex]\[ f'(x) = \frac{-1(1+x)-(1-x)1}{2\sqrt{(1-x)(1+x)}(1+x)^2} = \frac{-(1+x)-(1-x)}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-2}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-1}{(1+x)\sqrt{(1-x)(1+x)}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f'(0) = \frac{-1}{1 \cdot \sqrt{1}} = -1 \][/tex]
3. Find the second derivative and evaluate at [tex]\(x=0\)[/tex]:
This process involves taking another derivative of the first derivative, which is quite elaborate. However, continuing in this manner:
[tex]\[ f''(x) = \ldots (through some laborious steps) \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f''(0) = \frac{1}{2} \][/tex]
Continuing this process for higher-order derivatives, let's list the key terms obtained:
4. Combine all evaluated terms:
The expansion up to the required order will provide the polynomial form.
Upon fully expanding as requested, we obtain the series:
[tex]\[ \sqrt{\frac{1-x}{1+x}} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128} + \ldots \][/tex]
In simpler terms:
[tex]\[ = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128}. \][/tex]
Thus, the expanded series expression for [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] up to [tex]\(x^9\)[/tex] is:
[tex]\[ - \frac{35x^9}{128} + \frac{35x^8}{128} - \frac{5x^7}{16} + \frac{5x^6}{16} - \frac{3x^5}{8} + \frac{3x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1. \][/tex]
[tex]\[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots \][/tex]
Let's break down the expansion step by step.
1. Evaluate the function at [tex]\(x=0\)[/tex]:
[tex]\[ f(x) = \sqrt{\frac{1-x}{1+x}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1 \][/tex]
2. Find the first derivative and evaluate at [tex]\(x=0\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(\sqrt{\frac{1-x}{1+x}}\right) \][/tex]
Using the chain rule and quotient rule, we get:
[tex]\[ f'(x) = \frac{-1(1+x)-(1-x)1}{2\sqrt{(1-x)(1+x)}(1+x)^2} = \frac{-(1+x)-(1-x)}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-2}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-1}{(1+x)\sqrt{(1-x)(1+x)}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f'(0) = \frac{-1}{1 \cdot \sqrt{1}} = -1 \][/tex]
3. Find the second derivative and evaluate at [tex]\(x=0\)[/tex]:
This process involves taking another derivative of the first derivative, which is quite elaborate. However, continuing in this manner:
[tex]\[ f''(x) = \ldots (through some laborious steps) \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f''(0) = \frac{1}{2} \][/tex]
Continuing this process for higher-order derivatives, let's list the key terms obtained:
4. Combine all evaluated terms:
The expansion up to the required order will provide the polynomial form.
Upon fully expanding as requested, we obtain the series:
[tex]\[ \sqrt{\frac{1-x}{1+x}} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128} + \ldots \][/tex]
In simpler terms:
[tex]\[ = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128}. \][/tex]
Thus, the expanded series expression for [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] up to [tex]\(x^9\)[/tex] is:
[tex]\[ - \frac{35x^9}{128} + \frac{35x^8}{128} - \frac{5x^7}{16} + \frac{5x^6}{16} - \frac{3x^5}{8} + \frac{3x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1. \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.