IDNLearn.com: Where your questions meet expert advice and community insights. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
Alright! Let's prove the given statements step-by-step.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.