From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
Sure, let's break this problem down step-by-step.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.