IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
Sure, let's break this problem down step-by-step.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.