IDNLearn.com provides a collaborative environment for finding and sharing answers. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
To find the electromagnetic force between the two particles, we'll use Coulomb's law, which is given by the formula:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.
Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
Now substitute these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]
First, calculate the numerator:
[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]
The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:
[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]
[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]
Next, calculate the denominator:
[tex]\[ (0.05)^2 = 0.0025 \][/tex]
Now substitute these into the expression for [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]
Calculate the values:
[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]
[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]
[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]
[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the electromagnetic force between the two particles is:
[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]
So the correct answer is:
C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.
Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
Now substitute these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]
First, calculate the numerator:
[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]
The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:
[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]
[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]
Next, calculate the denominator:
[tex]\[ (0.05)^2 = 0.0025 \][/tex]
Now substitute these into the expression for [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]
Calculate the values:
[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]
[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]
[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]
[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the electromagnetic force between the two particles is:
[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]
So the correct answer is:
C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.