Get personalized answers to your unique questions on IDNLearn.com. Our community is ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To determine the Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) for the reaction [tex]\(2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] and ascertain whether the reaction is spontaneous or nonspontaneous at [tex]\(300.0 \, \text{K}\)[/tex], we follow these steps:
### Step 1: Calculation of [tex]\(\Delta H_{rxn}\)[/tex]
We start by calculating the change in enthalpy ([tex]\(\Delta H_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta H_{rxn} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta H_{rxn} = [2 \Delta H_f(\text{SO}_3(g))] - [2 \Delta H_f(\text{SO}_2(g)) + \Delta H_f(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{rxn} = [2(-396) \, \text{kJ/mol}] - [2(-297) \, \text{kJ/mol} + 0 \, \text{kJ/mol}] \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} - (-594 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} + 594 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{rxn} = -198 \, \text{kJ} \][/tex]
### Step 2: Calculation of [tex]\(\Delta S_{rxn}\)[/tex]
Next, we calculate the change in entropy ([tex]\(\Delta S_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta S_{rxn} = \sum S(\text{products}) - \sum S(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta S_{rxn} = [2 S(\text{SO}_3(g))] - [2 S(\text{SO}_2(g)) + S(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta S_{rxn} = [2(130.58) \, \text{J/(mol·K)}] - [2(191.50) \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - [383.00 \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - 588.00 \, \text{J/(mol·K)} \][/tex]
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \][/tex]
### Step 3: Conversion of [tex]\(\Delta S_{rxn}\)[/tex] to kJ/(mol·K)
Since [tex]\(\Delta H_{rxn}\)[/tex] is in kJ, we should convert [tex]\(\Delta S_{rxn}\)[/tex] from J/(mol·K) to kJ/(mol·K):
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} \][/tex]
[tex]\[ \Delta S_{rxn} = -0.32684 \, \text{kJ/(mol·K)} \][/tex]
### Step 4: Calculation of [tex]\(\Delta G_{rxn}\)[/tex]
Now, we can calculate the Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) using the equation:
[tex]\[ \Delta G_{rxn} = \Delta H_{rxn} - T \Delta S_{rxn} \][/tex]
Substituting the calculated values and the given temperature ([tex]\(T = 300.0 \, \text{K}\)[/tex]):
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} - 300.0 \, \text{K} \times (-0.32684 \, \text{kJ/(mol·K)}) \][/tex]
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} + 98.052 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} \][/tex]
### Step 5: Determination of Spontaneity
Since [tex]\(\Delta G_{rxn}\)[/tex] is negative:
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} < 0 \][/tex]
The reaction is spontaneous.
### Conclusion
The Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) for the reaction [tex]\(2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] at [tex]\(300.0 \, \text{K}\)[/tex] is [tex]\(-100 \, \text{kJ}\)[/tex], and the reaction is spontaneous. Thus, the correct answer is:
[tex]\[ -100 \, \text{kJ/mol}, \text{spontaneous} \][/tex]
### Step 1: Calculation of [tex]\(\Delta H_{rxn}\)[/tex]
We start by calculating the change in enthalpy ([tex]\(\Delta H_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta H_{rxn} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta H_{rxn} = [2 \Delta H_f(\text{SO}_3(g))] - [2 \Delta H_f(\text{SO}_2(g)) + \Delta H_f(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta H_{rxn} = [2(-396) \, \text{kJ/mol}] - [2(-297) \, \text{kJ/mol} + 0 \, \text{kJ/mol}] \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} - (-594 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{rxn} = -792 \, \text{kJ} + 594 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{rxn} = -198 \, \text{kJ} \][/tex]
### Step 2: Calculation of [tex]\(\Delta S_{rxn}\)[/tex]
Next, we calculate the change in entropy ([tex]\(\Delta S_{rxn}\)[/tex]) for the reaction. This is given by:
[tex]\[ \Delta S_{rxn} = \sum S(\text{products}) - \sum S(\text{reactants}) \][/tex]
For our reaction, it becomes:
[tex]\[ \Delta S_{rxn} = [2 S(\text{SO}_3(g))] - [2 S(\text{SO}_2(g)) + S(\text{O}_2(g))] \][/tex]
Substituting the given values:
[tex]\[ \Delta S_{rxn} = [2(130.58) \, \text{J/(mol·K)}] - [2(191.50) \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - [383.00 \, \text{J/(mol·K)} + 205.00 \, \text{J/(mol·K)}] \][/tex]
[tex]\[ \Delta S_{rxn} = 261.16 \, \text{J/(mol·K)} - 588.00 \, \text{J/(mol·K)} \][/tex]
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \][/tex]
### Step 3: Conversion of [tex]\(\Delta S_{rxn}\)[/tex] to kJ/(mol·K)
Since [tex]\(\Delta H_{rxn}\)[/tex] is in kJ, we should convert [tex]\(\Delta S_{rxn}\)[/tex] from J/(mol·K) to kJ/(mol·K):
[tex]\[ \Delta S_{rxn} = -326.84 \, \text{J/(mol·K)} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} \][/tex]
[tex]\[ \Delta S_{rxn} = -0.32684 \, \text{kJ/(mol·K)} \][/tex]
### Step 4: Calculation of [tex]\(\Delta G_{rxn}\)[/tex]
Now, we can calculate the Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) using the equation:
[tex]\[ \Delta G_{rxn} = \Delta H_{rxn} - T \Delta S_{rxn} \][/tex]
Substituting the calculated values and the given temperature ([tex]\(T = 300.0 \, \text{K}\)[/tex]):
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} - 300.0 \, \text{K} \times (-0.32684 \, \text{kJ/(mol·K)}) \][/tex]
[tex]\[ \Delta G_{rxn} = -198 \, \text{kJ} + 98.052 \, \text{kJ} \][/tex]
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} \][/tex]
### Step 5: Determination of Spontaneity
Since [tex]\(\Delta G_{rxn}\)[/tex] is negative:
[tex]\[ \Delta G_{rxn} = -99.948 \, \text{kJ} < 0 \][/tex]
The reaction is spontaneous.
### Conclusion
The Gibbs free energy change ([tex]\(\Delta G_{rxn}\)[/tex]) for the reaction [tex]\(2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] at [tex]\(300.0 \, \text{K}\)[/tex] is [tex]\(-100 \, \text{kJ}\)[/tex], and the reaction is spontaneous. Thus, the correct answer is:
[tex]\[ -100 \, \text{kJ/mol}, \text{spontaneous} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.