IDNLearn.com makes it easy to find precise answers to your specific questions. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
Let's solve the expression [tex]\(\left(-\frac{3}{4}\right)^{\frac{2}{3}}\)[/tex] step-by-step.
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
To deal with the fractional exponent of a negative base, we need to consider complex numbers because raising a negative number to a fractional power generally results in a complex number.
Given:
[tex]\[ \left( -\frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
First, let's convert [tex]\(-\frac{3}{4}\)[/tex] into its polar form. The polar form of a complex number [tex]\(r e^{i \theta}\)[/tex] can be useful in evaluating exponents. Here, [tex]\(r\)[/tex] is the magnitude and [tex]\(\theta\)[/tex] is the argument (angle).
1. Calculate the magnitude:
[tex]\[ r = \left| -\frac{3}{4} \right| = \frac{3}{4} \][/tex]
2. Determine the argument:
[tex]\[ \theta = \pi \quad \text{(since the number is negative, its angle with the positive real axis is } \pi \text{ radians)} \][/tex]
Now, express [tex]\(-\frac{3}{4}\)[/tex] in its polar form:
[tex]\[ -\frac{3}{4} = \frac{3}{4} e^{i \pi} \][/tex]
Now we need to raise this to the power of [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \left( \frac{3}{4} e^{i \pi} \right)^{\frac{2}{3}} \][/tex]
Using properties of exponents in polar form:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} e^{i \pi \cdot \frac{2}{3}} \][/tex]
3. Calculate the magnitude part:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \][/tex]
4. Compute the argument part:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \][/tex]
Putting it all together:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot e^{i \cdot \frac{2}{3} \pi} \][/tex]
Evaluate the magnitude:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \approx 0.641 \][/tex]
Evaluate the argument:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} = \cos \left( \frac{2}{3} \pi \right) + i \sin \left( \frac{2}{3} \pi \right) \][/tex]
Using the values of [tex]\(\cos \left( \frac{2}{3} \pi \right)\)[/tex] and [tex]\(\sin \left( \frac{2}{3} \pi \right)\)[/tex]:
[tex]\[ \cos \left( \frac{2}{3} \pi \right) \approx -0.5 \quad \text{and} \quad \sin \left( \frac{2}{3} \pi \right) \approx 0.866 \][/tex]
Thus:
[tex]\[ e^{i \cdot \frac{2}{3} \pi} \approx -0.5 + 0.866i \][/tex]
Combining both parts:
[tex]\[ \left( \frac{3}{4} \right)^{\frac{2}{3}} \cdot \left( -0.5 + 0.866i \right) \][/tex]
The final result is:
[tex]\[ (-0.4127409061118282 + 0.7148882197477024i) \][/tex]
So, the result of [tex]\(\left( -\frac{3}{4} \right)^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{(-0.4127409061118282 + 0.7148882197477024i)} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.