Experience the convenience of getting your questions answered at IDNLearn.com. Discover in-depth answers from knowledgeable professionals, providing you with the information you need.
Sagot :
To determine the number of moles of air inside the volleyball, we will use the Ideal Gas Law, represented by the equation:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant in units of [tex]\( \text{L·kPa/(mol·K)} \)[/tex],
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
Given data:
- Temperature in Celsius: [tex]\(24.6^\circ \text{C}\)[/tex]
- Pressure in kilopascals: [tex]\(130.75 \text{ kPa}\)[/tex]
- Volume in liters: [tex]\(5.27 \text{ L}\)[/tex]
- Ideal gas constant: [tex]\(R = 8.314 \text{ L·kPa/(mol·K)}\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin:
[tex]\[ T = 24.6 + 273.15 = 297.75 \text{ K} \][/tex]
Next, we rearrange the ideal gas law equation to solve for [tex]\( n \)[/tex] (number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substituting the given values into the equation:
[tex]\[ n = \frac{(130.75 \text{ kPa}) \times (5.27 \text{ L})}{(8.314 \text{ L·kPa/(mol·K)}) \times (297.75 \text{ K})} \][/tex]
From the calculation, we obtain:
[tex]\[ n \approx 0.2783495492918886 \text{ mol} \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ n \approx 0.278 \text{ mol} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{0.278 \text{ mol}} \][/tex]
So, the correct option is:
A. 0.278 mol
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure in kilopascals (kPa),
- [tex]\( V \)[/tex] is the volume in liters (L),
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant in units of [tex]\( \text{L·kPa/(mol·K)} \)[/tex],
- [tex]\( T \)[/tex] is the temperature in Kelvin (K).
Given data:
- Temperature in Celsius: [tex]\(24.6^\circ \text{C}\)[/tex]
- Pressure in kilopascals: [tex]\(130.75 \text{ kPa}\)[/tex]
- Volume in liters: [tex]\(5.27 \text{ L}\)[/tex]
- Ideal gas constant: [tex]\(R = 8.314 \text{ L·kPa/(mol·K)}\)[/tex]
First, we need to convert the temperature from Celsius to Kelvin:
[tex]\[ T = 24.6 + 273.15 = 297.75 \text{ K} \][/tex]
Next, we rearrange the ideal gas law equation to solve for [tex]\( n \)[/tex] (number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substituting the given values into the equation:
[tex]\[ n = \frac{(130.75 \text{ kPa}) \times (5.27 \text{ L})}{(8.314 \text{ L·kPa/(mol·K)}) \times (297.75 \text{ K})} \][/tex]
From the calculation, we obtain:
[tex]\[ n \approx 0.2783495492918886 \text{ mol} \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ n \approx 0.278 \text{ mol} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{0.278 \text{ mol}} \][/tex]
So, the correct option is:
A. 0.278 mol
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.