IDNLearn.com makes it easy to get reliable answers from knowledgeable individuals. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.
Sagot :
Certainly! Let's verify the given statement: [tex]\((PQ)^{-1} = Q^{-1} P^{-1}\)[/tex] where the matrices [tex]\(P\)[/tex] and [tex]\(Q\)[/tex] are defined as follows:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
### Step 1: Calculate the product [tex]\(PQ\)[/tex]
First, we compute the matrix product [tex]\(PQ\)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
We can find each element of the resulting matrix [tex]\(PQ\)[/tex] as follows:
- The element in the first row, first column is [tex]\(4 \cdot 6 + 5 \cdot 8 = 24 + 40 = 64\)[/tex]
- The element in the first row, second column is [tex]\(4 \cdot 7 + 5 \cdot 9 = 28 + 45 = 73\)[/tex]
- The element in the second row, first column is [tex]\(7 \cdot 6 + 9 \cdot 8 = 42 + 72 = 114\)[/tex]
- The element in the second row, second column is [tex]\(7 \cdot 7 + 9 \cdot 9 = 49 + 81 = 130\)[/tex]
Thus,
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
### Step 2: Calculate the inverse of [tex]\(P\)[/tex]
Next, we compute the inverse of matrix [tex]\(P\)[/tex]. We use the formula for the inverse of a [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ P^{-1} = \frac{1}{\text{det}(P)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where} \quad P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
For [tex]\(P\)[/tex]:
[tex]\[ P = \begin{pmatrix} 4 & 5 \\ 7 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(P)\)[/tex], is given by:
[tex]\[ \text{det}(P) = 4 \cdot 9 - 5 \cdot 7 = 36 - 35 = 1 \][/tex]
Hence,
[tex]\[ P^{-1} = \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
### Step 3: Calculate the inverse of [tex]\(Q\)[/tex]
Similarly, we calculate the inverse of matrix [tex]\(Q\)[/tex]:
[tex]\[ Q = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(Q)\)[/tex], is given by:
[tex]\[ \text{det}(Q) = 6 \cdot 9 - 7 \cdot 8 = 54 - 56 = -2 \][/tex]
Thus,
[tex]\[ Q^{-1} = \frac{1}{-2} \begin{pmatrix} 9 & -7 \\ -8 & 6 \end{pmatrix} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(Q^{-1} P^{-1}\)[/tex]
We now find the product of the inverses [tex]\(Q^{-1} P^{-1}\)[/tex]:
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -4.5 & 3.5 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 9 & -5 \\ -7 & 4 \end{pmatrix} \][/tex]
We calculate each element of the resulting matrix:
- The element in the first row, first column is [tex]\((-4.5 \cdot 9) + (3.5 \cdot -7) = -40.5 - 24.5 = -65\)[/tex]
- The element in the first row, second column is [tex]\((-4.5 \cdot -5) + (3.5 \cdot 4) = 22.5 + 14 = 36.5\)[/tex]
- The element in the second row, first column is [tex]\((4 \cdot 9) + (-3 \cdot -7) = 36 + 21 = 57\)[/tex]
- The element in the second row, second column is [tex]\((4 \cdot -5) + (-3 \cdot 4) = -20 - 12 = -32\)[/tex]
Thus,
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Step 5: Calculate the inverse of [tex]\(PQ\)[/tex]
Finally, we calculate the inverse of the product [tex]\(PQ \)[/tex]:
[tex]\[ PQ = \begin{pmatrix} 64 & 73 \\ 114 & 130 \end{pmatrix} \][/tex]
The determinant, [tex]\(\text{det}(PQ)\)[/tex], is:
[tex]\[ \text{det}(PQ) = 64 \cdot 130 - 73 \cdot 114 = 8320 - 8322 = -2 \][/tex]
Thus,
[tex]\[ (PQ)^{-1} = \frac{1}{-2} \begin{pmatrix} 130 & -73 \\ -114 & 64 \end{pmatrix} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
### Conclusion
Since:
[tex]\[ (PQ)^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
and
[tex]\[ Q^{-1} P^{-1} = \begin{pmatrix} -65 & 36.5 \\ 57 & -32 \end{pmatrix} \][/tex]
We have verified that:
[tex]\[ (PQ)^{-1} = Q^{-1} P^{-1} \][/tex]
This completes the solution!
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.