IDNLearn.com offers a user-friendly platform for finding and sharing knowledge. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
Para hallar el dominio y rango de la función [tex]\( f(x) = \frac{x^2 - 1}{x^2 + 4} \)[/tex], sigamos los siguientes pasos:
### Dominio:
El dominio de una función se refiere a todos los valores posibles que [tex]\( x \)[/tex] puede tomar.
1. Observamos la función [tex]\( f(x) = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. El denominador es [tex]\( x^2 + 4 \)[/tex], y necesitamos asegurarnos de que nunca sea cero, ya que la división por cero no está definida.
3. Notamos que [tex]\( x^2 + 4 \)[/tex] siempre es mayor que cero para todos los números reales [tex]\( x \)[/tex], porque [tex]\( x^2 \)[/tex] es siempre no negativo y sumado con 4 siempre dará un número positivo.
Por lo tanto, el denominador nunca es cero para cualquier valor de [tex]\( x \)[/tex] en los números reales.
Dominio: Todos los números reales, es decir, [tex]\( (-\infty, \infty) \)[/tex].
### Rango:
Para encontrar el rango de la función, necesitamos determinar todos los valores posibles de [tex]\( y = f(x) \)[/tex].
1. Consideramos la función [tex]\( y = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. Para buscar el rango, analizamos cómo se comporta la función a medida que [tex]\( x \)[/tex] toma diferentes valores.
#### Análisis de Comportamiento:
- Cuando [tex]\( x \)[/tex] tiende a infinito ([tex]\( +\infty \)[/tex]) o menos infinito ([tex]\( -\infty \)[/tex]), los términos [tex]\( x^2 \)[/tex] dominan tanto en el numerador como en el denominador:
[tex]\[ \lim_{{x \to \pm \infty}} \frac{x^2 - 1}{x^2 + 4} = \lim_{{x \to \pm \infty}} \frac{1 - \frac{1}{x^2}}{1 + \frac{4}{x^2}} = 1 \][/tex]
Por lo tanto, f(x) se aproxima a 1, pero nunca lo alcanza exactamente debido a los términos adicionales en el numerador y el denominador.
- Consideramos el comportamiento en el punto crítico y cómo la función se comporta en otros valores específicos:
- Observamos que cuando [tex]\( x = 0 \)[/tex], tenemos:
[tex]\[ f(0) = \frac{0^2 - 1}{0^2 + 4} = \frac{-1}{4} = -\frac{1}{4} \][/tex]
- Evaluamos cómo se comporta la función en otros puntos analizados, tales como cuando [tex]\( y = -1 \)[/tex]:
- Para [tex]\( y = -1 \)[/tex]:
[tex]\[ -1 = \frac{x^2 - 1}{x^2 + 4} \][/tex]
Llevamos a:
[tex]\[ -1(x^2 + 4) = x^2 - 1 \implies -x^2 - 4 = x^2 - 1 \implies -4 = 2x^2 - 1 \implies -3 = 2x^2 \implies x^2 = -\frac{3}{2} \][/tex]
Lo que no tiene solución en los números reales.
- Cuando [tex]\( y \)[/tex] se aproxima a valores cercanos a -1 y 1, la función puede aproximarse ambos valores en ciertos puntos críticos.
### Conclusión del Rango:
Los valores que toma la función [tex]\( f(x) \)[/tex] varían entre -1 y 1, ya que el comportamiento en los puntos críticos y a medida que x tiende a infinito, muestran esa propiedad.
Rango: [tex]\([-1, 1]\)[/tex].
Entonces, tenemos:
- Dominio: [tex]\(\left( -\infty, \infty \right) \)[/tex]
- Rango: [tex]\([-1, 1]\)[/tex]
### Dominio:
El dominio de una función se refiere a todos los valores posibles que [tex]\( x \)[/tex] puede tomar.
1. Observamos la función [tex]\( f(x) = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. El denominador es [tex]\( x^2 + 4 \)[/tex], y necesitamos asegurarnos de que nunca sea cero, ya que la división por cero no está definida.
3. Notamos que [tex]\( x^2 + 4 \)[/tex] siempre es mayor que cero para todos los números reales [tex]\( x \)[/tex], porque [tex]\( x^2 \)[/tex] es siempre no negativo y sumado con 4 siempre dará un número positivo.
Por lo tanto, el denominador nunca es cero para cualquier valor de [tex]\( x \)[/tex] en los números reales.
Dominio: Todos los números reales, es decir, [tex]\( (-\infty, \infty) \)[/tex].
### Rango:
Para encontrar el rango de la función, necesitamos determinar todos los valores posibles de [tex]\( y = f(x) \)[/tex].
1. Consideramos la función [tex]\( y = \frac{x^2 - 1}{x^2 + 4} \)[/tex].
2. Para buscar el rango, analizamos cómo se comporta la función a medida que [tex]\( x \)[/tex] toma diferentes valores.
#### Análisis de Comportamiento:
- Cuando [tex]\( x \)[/tex] tiende a infinito ([tex]\( +\infty \)[/tex]) o menos infinito ([tex]\( -\infty \)[/tex]), los términos [tex]\( x^2 \)[/tex] dominan tanto en el numerador como en el denominador:
[tex]\[ \lim_{{x \to \pm \infty}} \frac{x^2 - 1}{x^2 + 4} = \lim_{{x \to \pm \infty}} \frac{1 - \frac{1}{x^2}}{1 + \frac{4}{x^2}} = 1 \][/tex]
Por lo tanto, f(x) se aproxima a 1, pero nunca lo alcanza exactamente debido a los términos adicionales en el numerador y el denominador.
- Consideramos el comportamiento en el punto crítico y cómo la función se comporta en otros valores específicos:
- Observamos que cuando [tex]\( x = 0 \)[/tex], tenemos:
[tex]\[ f(0) = \frac{0^2 - 1}{0^2 + 4} = \frac{-1}{4} = -\frac{1}{4} \][/tex]
- Evaluamos cómo se comporta la función en otros puntos analizados, tales como cuando [tex]\( y = -1 \)[/tex]:
- Para [tex]\( y = -1 \)[/tex]:
[tex]\[ -1 = \frac{x^2 - 1}{x^2 + 4} \][/tex]
Llevamos a:
[tex]\[ -1(x^2 + 4) = x^2 - 1 \implies -x^2 - 4 = x^2 - 1 \implies -4 = 2x^2 - 1 \implies -3 = 2x^2 \implies x^2 = -\frac{3}{2} \][/tex]
Lo que no tiene solución en los números reales.
- Cuando [tex]\( y \)[/tex] se aproxima a valores cercanos a -1 y 1, la función puede aproximarse ambos valores en ciertos puntos críticos.
### Conclusión del Rango:
Los valores que toma la función [tex]\( f(x) \)[/tex] varían entre -1 y 1, ya que el comportamiento en los puntos críticos y a medida que x tiende a infinito, muestran esa propiedad.
Rango: [tex]\([-1, 1]\)[/tex].
Entonces, tenemos:
- Dominio: [tex]\(\left( -\infty, \infty \right) \)[/tex]
- Rango: [tex]\([-1, 1]\)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.