Discover new information and insights with the help of IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
To prove that [tex]\(\|\cdot\|\)[/tex] defined as [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] for [tex]\((a, b) \in V = \mathbb{R}^2\)[/tex] is a norm, we need to verify that it satisfies the three properties of a norm:
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions are important to us at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.