Get the most out of your questions with the extensive resources available on IDNLearn.com. Ask your questions and receive comprehensive, trustworthy responses from our dedicated team of experts.

Drag each label to the correct location in the equation. Each label can be used more than once, but not all labels will be used.

The number of bacteria, [tex]\( b \)[/tex], in a refrigerated food is given by the function [tex]\( b(t) = 15t^2 - 60t + 125 \)[/tex], where [tex]\( t \)[/tex] is the temperature of the food in degrees Fahrenheit. The function [tex]\( t(h) = 3h + 4 \)[/tex] gives the temperature, [tex]\( t \)[/tex], of the food [tex]\( h \)[/tex] hours after being removed from the refrigerator. Find the number of bacteria in the food in [tex]\( h \)[/tex] hours.

[tex]\[
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
$b \circ t(h)$ & $=$ & & $h^2$ & & & $h$ & \\
\hline
\end{tabular}
\][/tex]

Labels:
135, 180, 125, 160, 155


Sagot :

Let's break down the calculation step by step and find the correct labeling for the given equation, finding the number of bacteria in the food in [tex]$h$[/tex] hours.

We have two functions:
1. The number of bacteria in terms of temperature [tex]\( t \)[/tex]:
[tex]\[ b(t) = 15t^2 - 60t + 125 \][/tex]
2. The temperature in terms of hours [tex]\( h \)[/tex]:
[tex]\[ t(h) = 3h + 4 \][/tex]

Firstly, we are going to substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex] to find [tex]\( b(t(h)) \)[/tex].

Given:
[tex]\[ t(h) = 3h + 4 \][/tex]

We substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex]:

[tex]\[ b(t(h)) = b(3h + 4) \][/tex]

Now, we substitute [tex]\( 3h + 4 \)[/tex] into the equation for bacteria:
[tex]\[ b(3h + 4) = 15(3h + 4)^2 - 60(3h + 4) + 125 \][/tex]

Next, expand and simplify the expression:
[tex]\[ (3h + 4)^2 = (3h)^2 + 2 \cdot 3h \cdot 4 + 4^2 = 9h^2 + 24h + 16 \][/tex]

Substitute this back into the bacterial function:
[tex]\[ b(3h + 4) = 15(9h^2 + 24h + 16) - 60(3h + 4) + 125 \][/tex]

Distribute the 15 and simplify:
[tex]\[ = 135h^2 + 360h + 240 - 180h - 240 + 125 \][/tex]

Combine like terms:
[tex]\[ = 135h^2 + 180h + 125 \][/tex]

Therefore, the function for the number of bacteria in [tex]\( h \)[/tex] hours is:
[tex]\[ b(t(h)) = 135h^2 + 180h + 125 \][/tex]

Using the labels provided, we can fill in the equation accordingly:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
[tex]$b \circ t(h)$[/tex] & [tex]$=$[/tex] & 135 & [tex]$h^2$[/tex] & + & 180 & [tex]$h$[/tex] & + 125 \\
\hline
\end{tabular}