Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.

Maximize [tex]$F=6x + 5y$[/tex] subject to:
[tex]\[ x + y \leq 4 \][/tex]
[tex]\[ 2x + y \leq 7 \][/tex]
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]

a. Maximum value

b. Point where maximum value occurs


Sagot :

To maximize the function [tex]\( F = 6x + 5y \)[/tex] subject to the constraints:

1. [tex]\( x + y \leq 4 \)[/tex]
2. [tex]\( 2x + y \leq 7 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]

we proceed with the following steps:

### Step 1: Identify the Feasible Region
Firstly, let's identify the feasible region determined by the constraints:

- The line [tex]\( x + y = 4 \)[/tex] can be rewritten as [tex]\( y = 4 - x \)[/tex]. This represents a line that passes through the points [tex]\( (0,4) \)[/tex] and [tex]\( (4,0) \)[/tex].
- The line [tex]\( 2x + y = 7 \)[/tex] can be rewritten as [tex]\( y = 7 - 2x \)[/tex]. This represents a line that passes through the points [tex]\( (0,7) \)[/tex] and [tex]\( (3.5,0) \)[/tex].

Next, determine the intersection points and which portion of the plane satisfies all the constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex]. The region of interest is bounded by these lines and the coordinate axes.

### Step 2: Find the Intersection Points
Calculate the intersection points of the lines:

1. Intersection of [tex]\( x + y = 4 \)[/tex] and [tex]\( 2x + y = 7 \)[/tex]:

[tex]\[ \begin{cases} x + y = 4 \\ 2x + y = 7 \end{cases} \][/tex]

Subtract the first equation from the second:

[tex]\[ (2x + y) - (x + y) = 7 - 4 \\ x = 3 \][/tex]

Substitute [tex]\( x = 3 \)[/tex] back into [tex]\( x + y = 4 \)[/tex]:

[tex]\[ 3 + y = 4 \\ y = 1 \][/tex]

So, the intersection point is [tex]\( (3, 1) \)[/tex].

### Step 3: Evaluate the Objective Function at Corner Points
Evaluate [tex]\( F = 6x + 5y \)[/tex] at each vertex of the feasible region. The vertices are the intersection points and the points where the lines intersect the axes:

1. At [tex]\( (0,0) \)[/tex]:
[tex]\[ F = 6(0) + 5(0) = 0 \][/tex]

2. At [tex]\( (4,0) \)[/tex]:
[tex]\[ F = 6(4) + 5(0) = 24 \][/tex]

3. At [tex]\( (0,7) \)[/tex]:
[tex]\[ F = 6(0) + 5(7) = 35 \quad (\text{Note: This point does not satisfy } x + y \leq 4) \][/tex]

4. At [tex]\( (3,1) \)[/tex]:
[tex]\[ F = 6(3) + 5(1) = 18 + 5 = 23 \][/tex]

### Step 4: Determine the Maximum Value
Compare the values obtained at each feasible vertex:

- [tex]\( F(0, 0) = 0 \)[/tex]
- [tex]\( F(4, 0) = 24 \)[/tex]
- [tex]\( F(3, 1) = 23 \)[/tex]

The maximum value is [tex]\( F = 24 \)[/tex] achieved at the point [tex]\( (3, 1) \)[/tex].

### Conclusion

[a] The maximum value of [tex]\( F \)[/tex] is [tex]\(\boxed{23.0}\)[/tex].

[b] The point where this maximum value occurs is [tex]\(\boxed{(3.0, 1.0)}\)[/tex].

Therefore, the final answer is:
(a) The maximum value [tex]\(F\)[/tex] is [tex]\(23.0\)[/tex].
(b) The point where the maximum value occurs is [tex]\((3.0, 1.0)\)[/tex].

These are the optimal solutions within the feasible region for the given linear programming problem.