Connect with a community that values knowledge and expertise on IDNLearn.com. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.

An object is thrown upward at a speed of 68 feet per second by a machine from a height of 9 feet off the ground. The height [tex]h[/tex] of the object after [tex]t[/tex] seconds can be found using the equation [tex]h = -16 t^2 + 68 t + 9[/tex].

1. When will the height be 80 feet?

2. When will the object reach the ground?


Sagot :

To answer these questions, we need to solve the given height equation [tex]\( h = -16t^2 + 68t + 9 \)[/tex] for specific conditions.


### Part 1: When will the height be 80 feet?

We need to find the time [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 80 feet:

[tex]\[ 80 = -16t^2 + 68t + 9 \][/tex]

Rearrange the equation to set it to zero:

[tex]\[ -16t^2 + 68t + 9 - 80 = 0 \quad \Rightarrow \quad -16t^2 + 68t - 71 = 0 \][/tex]

This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = -71 \)[/tex]. To solve it, we use the quadratic formula:

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

First, calculate the discriminant, [tex]\( \Delta \)[/tex]:

[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(-71) \][/tex]

Using the discriminant, we find the two potential solutions for [tex]\( t \)[/tex]:

[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]

Substituting the values, we get:

[tex]\[ t_1 \approx 1.85 \quad \text{seconds} \][/tex]
[tex]\[ t_2 \approx 2.40 \quad \text{seconds} \][/tex]

So, the height of 80 feet is achieved at approximately 1.85 seconds and 2.40 seconds.

[tex]\[ \boxed{1.85 \, \text{seconds}} \][/tex]
[tex]\[ \boxed{2.40 \, \text{seconds}} \][/tex]

### Part 2: When will the object reach the ground?

To find when the object will reach the ground, we set [tex]\( h = 0 \)[/tex]:

[tex]\[ 0 = -16t^2 + 68t + 9 \][/tex]

This is also a quadratic equation. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = 9 \)[/tex]. We use the same quadratic formula:

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Calculate the discriminant, [tex]\( \Delta \)[/tex]:

[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(9) \][/tex]

Using the discriminant, find the two potential solutions for [tex]\( t \)[/tex]:

[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]

Substituting these values, we get:

[tex]\[ t_1 \approx -0.13 \quad \text{seconds (not a valid physical solution)} \][/tex]
[tex]\[ t_2 \approx 4.38 \quad \text{seconds} \][/tex]

The valid solution is:

[tex]\[ \boxed{4.38 \, \text{seconds}} \][/tex]