At IDNLearn.com, find answers to your most pressing questions from experts and enthusiasts alike. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.
Sagot :
Certainly! Let's solve the problem step by step for the function [tex]\( f(x) = x \sqrt{2 - x} \)[/tex].
### 1. Intercepts
To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).
For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]
So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]
### 2. Relative Extrema
To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:
#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]
#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]
[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]
Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]
Relative Minimum:
[tex]\(((none\right)\)[/tex]
Relative Maximum:
\[[\frac{4}{3},0) \)
Point of Inflection:
[tex]\((none\right)\)[/tex]
Asymptotes:
DNE
### 1. Intercepts
To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).
For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]
So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]
### 2. Relative Extrema
To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:
#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]
#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]
[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]
Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]
Relative Minimum:
[tex]\(((none\right)\)[/tex]
Relative Maximum:
\[[\frac{4}{3},0) \)
Point of Inflection:
[tex]\((none\right)\)[/tex]
Asymptotes:
DNE
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.