IDNLearn.com: Where your questions meet expert advice and community insights. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.
Sagot :
Certainly! Let's solve the problem step by step for the function [tex]\( f(x) = x \sqrt{2 - x} \)[/tex].
### 1. Intercepts
To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).
For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]
So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]
### 2. Relative Extrema
To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:
#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]
#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]
[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]
Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]
Relative Minimum:
[tex]\(((none\right)\)[/tex]
Relative Maximum:
\[[\frac{4}{3},0) \)
Point of Inflection:
[tex]\((none\right)\)[/tex]
Asymptotes:
DNE
### 1. Intercepts
To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).
For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]
So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]
### 2. Relative Extrema
To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:
#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]
#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]
[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]
Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]
Relative Minimum:
[tex]\(((none\right)\)[/tex]
Relative Maximum:
\[[\frac{4}{3},0) \)
Point of Inflection:
[tex]\((none\right)\)[/tex]
Asymptotes:
DNE
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.