IDNLearn.com is your go-to platform for finding reliable answers quickly. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
To solve this problem using the Assumed Mean Method, we need to follow these steps:
### Step 1: Define the Given Data
Suppose we are given the following frequency distribution of masses:
| Mass Range (x) | Midpoint [tex]\( m_i \)[/tex] | Frequency [tex]\( f_i \)[/tex] |
|----------------|-----------------|--------------------|
| 50 - 54 | 52.0 | 8 |
| 55 - 59 | 57.0 | 12 |
| 60 - 64 | 62.0 | 20 |
| 65 - 69 | 67.0 | 25 |
| 70 - 74 | 72.0 | 10 |
| 75 - 79 | 77.0 | 5 |
### Step 2: Calculate the Midpoints [tex]\( m_i \)[/tex]
The midpoints have already been calculated and provided in the table above.
### Step 3: Choose an Assumed Mean (A)
Let's choose [tex]\( A \)[/tex] as the midpoint of the class with the highest frequency. Here, the class with the highest frequency is 65 - 69, and its midpoint [tex]\( m_i \)[/tex] is:
[tex]\[ A = 67.0 \][/tex]
### Step 4: Calculate the Deviations [tex]\( d_i = m_i - A \)[/tex]
Now, calculate [tex]\( d_i \)[/tex] for each class:
| Midpoint [tex]\( m_i \)[/tex] | Deviation [tex]\( d_i = m_i - 67.0 \)[/tex] |
|--------------------|----------------------------------|
| 52.0 | 52.0 - 67.0 = -15.0 |
| 57.0 | 57.0 - 67.0 = -10.0 |
| 62.0 | 62.0 - 67.0 = -5.0 |
| 67.0 | 67.0 - 0.0 |
| 72.0 | 72.0 - 67.0 = 5.0 |
| 77.0 | 77.0 - 67.0 = 10.0 |
### Step 5: Compute the Product of Frequency and Deviation [tex]\( f_i \cdot d_i \)[/tex]
Next, calculate [tex]\( f_i \cdot d_i \)[/tex] for each class:
| Frequency [tex]\( f_i \)[/tex] | Deviation [tex]\( d_i \)[/tex] | [tex]\( f_i \cdot d_i \)[/tex] |
|---------------------|---------------------|---------------------|
| 8 | -15.0 | 8 \cdot (-15.0) = -120.0 |
| 12 | -10.0 | 12 \cdot (-10.0) = -120.0 |
| 20 | -5.0 | 20 \cdot (-5.0) = -100.0 |
| 25 | 0.0 | 25 \cdot 0.0 = 0.0 |
| 10 | 5.0 | 10 \cdot 5.0 = 50.0 |
| 5 | 10.0 | 5 \cdot 10.0 = 50.0 |
### Step 6: Calculate [tex]\( \sum f_i \)[/tex] and [tex]\( \sum (f_i \cdot d_i) \)[/tex]
Sum of frequencies [tex]\( \sum f_i \)[/tex]:
[tex]\[ \sum f_i = 8 + 12 + 20 + 25 + 10 + 5 = 80 \][/tex]
Sum of products [tex]\( \sum (f_i \cdot d_i) \)[/tex]:
[tex]\[ \sum (f_i \cdot d_i) = -120 + -120 + -100 + 0 + 50 + 50 = -240 \][/tex]
### Step 7: Compute the Mean [tex]\( \bar{x} \)[/tex]
Finally, we use the Assumed Mean Formula to calculate the mean [tex]\( \bar{x} \)[/tex]:
[tex]\[ \bar{x} = A + \frac{\sum (f_i \cdot d_i)}{\sum f_i} \][/tex]
[tex]\[ \bar{x} = 67.0 + \frac{-240}{80} \][/tex]
[tex]\[ \bar{x} = 67.0 - 3 \][/tex]
[tex]\[ \bar{x} = 64.0 \][/tex]
### Conclusion:
The mean mass of the 80 items, using the Assumed Mean Method, is [tex]\( 64.0 \, \text{kg} \)[/tex].
### Step 1: Define the Given Data
Suppose we are given the following frequency distribution of masses:
| Mass Range (x) | Midpoint [tex]\( m_i \)[/tex] | Frequency [tex]\( f_i \)[/tex] |
|----------------|-----------------|--------------------|
| 50 - 54 | 52.0 | 8 |
| 55 - 59 | 57.0 | 12 |
| 60 - 64 | 62.0 | 20 |
| 65 - 69 | 67.0 | 25 |
| 70 - 74 | 72.0 | 10 |
| 75 - 79 | 77.0 | 5 |
### Step 2: Calculate the Midpoints [tex]\( m_i \)[/tex]
The midpoints have already been calculated and provided in the table above.
### Step 3: Choose an Assumed Mean (A)
Let's choose [tex]\( A \)[/tex] as the midpoint of the class with the highest frequency. Here, the class with the highest frequency is 65 - 69, and its midpoint [tex]\( m_i \)[/tex] is:
[tex]\[ A = 67.0 \][/tex]
### Step 4: Calculate the Deviations [tex]\( d_i = m_i - A \)[/tex]
Now, calculate [tex]\( d_i \)[/tex] for each class:
| Midpoint [tex]\( m_i \)[/tex] | Deviation [tex]\( d_i = m_i - 67.0 \)[/tex] |
|--------------------|----------------------------------|
| 52.0 | 52.0 - 67.0 = -15.0 |
| 57.0 | 57.0 - 67.0 = -10.0 |
| 62.0 | 62.0 - 67.0 = -5.0 |
| 67.0 | 67.0 - 0.0 |
| 72.0 | 72.0 - 67.0 = 5.0 |
| 77.0 | 77.0 - 67.0 = 10.0 |
### Step 5: Compute the Product of Frequency and Deviation [tex]\( f_i \cdot d_i \)[/tex]
Next, calculate [tex]\( f_i \cdot d_i \)[/tex] for each class:
| Frequency [tex]\( f_i \)[/tex] | Deviation [tex]\( d_i \)[/tex] | [tex]\( f_i \cdot d_i \)[/tex] |
|---------------------|---------------------|---------------------|
| 8 | -15.0 | 8 \cdot (-15.0) = -120.0 |
| 12 | -10.0 | 12 \cdot (-10.0) = -120.0 |
| 20 | -5.0 | 20 \cdot (-5.0) = -100.0 |
| 25 | 0.0 | 25 \cdot 0.0 = 0.0 |
| 10 | 5.0 | 10 \cdot 5.0 = 50.0 |
| 5 | 10.0 | 5 \cdot 10.0 = 50.0 |
### Step 6: Calculate [tex]\( \sum f_i \)[/tex] and [tex]\( \sum (f_i \cdot d_i) \)[/tex]
Sum of frequencies [tex]\( \sum f_i \)[/tex]:
[tex]\[ \sum f_i = 8 + 12 + 20 + 25 + 10 + 5 = 80 \][/tex]
Sum of products [tex]\( \sum (f_i \cdot d_i) \)[/tex]:
[tex]\[ \sum (f_i \cdot d_i) = -120 + -120 + -100 + 0 + 50 + 50 = -240 \][/tex]
### Step 7: Compute the Mean [tex]\( \bar{x} \)[/tex]
Finally, we use the Assumed Mean Formula to calculate the mean [tex]\( \bar{x} \)[/tex]:
[tex]\[ \bar{x} = A + \frac{\sum (f_i \cdot d_i)}{\sum f_i} \][/tex]
[tex]\[ \bar{x} = 67.0 + \frac{-240}{80} \][/tex]
[tex]\[ \bar{x} = 67.0 - 3 \][/tex]
[tex]\[ \bar{x} = 64.0 \][/tex]
### Conclusion:
The mean mass of the 80 items, using the Assumed Mean Method, is [tex]\( 64.0 \, \text{kg} \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.