Find solutions to your problems with the help of IDNLearn.com's expert community. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To solve this problem using the Assumed Mean Method, we need to follow these steps:
### Step 1: Define the Given Data
Suppose we are given the following frequency distribution of masses:
| Mass Range (x) | Midpoint [tex]\( m_i \)[/tex] | Frequency [tex]\( f_i \)[/tex] |
|----------------|-----------------|--------------------|
| 50 - 54 | 52.0 | 8 |
| 55 - 59 | 57.0 | 12 |
| 60 - 64 | 62.0 | 20 |
| 65 - 69 | 67.0 | 25 |
| 70 - 74 | 72.0 | 10 |
| 75 - 79 | 77.0 | 5 |
### Step 2: Calculate the Midpoints [tex]\( m_i \)[/tex]
The midpoints have already been calculated and provided in the table above.
### Step 3: Choose an Assumed Mean (A)
Let's choose [tex]\( A \)[/tex] as the midpoint of the class with the highest frequency. Here, the class with the highest frequency is 65 - 69, and its midpoint [tex]\( m_i \)[/tex] is:
[tex]\[ A = 67.0 \][/tex]
### Step 4: Calculate the Deviations [tex]\( d_i = m_i - A \)[/tex]
Now, calculate [tex]\( d_i \)[/tex] for each class:
| Midpoint [tex]\( m_i \)[/tex] | Deviation [tex]\( d_i = m_i - 67.0 \)[/tex] |
|--------------------|----------------------------------|
| 52.0 | 52.0 - 67.0 = -15.0 |
| 57.0 | 57.0 - 67.0 = -10.0 |
| 62.0 | 62.0 - 67.0 = -5.0 |
| 67.0 | 67.0 - 0.0 |
| 72.0 | 72.0 - 67.0 = 5.0 |
| 77.0 | 77.0 - 67.0 = 10.0 |
### Step 5: Compute the Product of Frequency and Deviation [tex]\( f_i \cdot d_i \)[/tex]
Next, calculate [tex]\( f_i \cdot d_i \)[/tex] for each class:
| Frequency [tex]\( f_i \)[/tex] | Deviation [tex]\( d_i \)[/tex] | [tex]\( f_i \cdot d_i \)[/tex] |
|---------------------|---------------------|---------------------|
| 8 | -15.0 | 8 \cdot (-15.0) = -120.0 |
| 12 | -10.0 | 12 \cdot (-10.0) = -120.0 |
| 20 | -5.0 | 20 \cdot (-5.0) = -100.0 |
| 25 | 0.0 | 25 \cdot 0.0 = 0.0 |
| 10 | 5.0 | 10 \cdot 5.0 = 50.0 |
| 5 | 10.0 | 5 \cdot 10.0 = 50.0 |
### Step 6: Calculate [tex]\( \sum f_i \)[/tex] and [tex]\( \sum (f_i \cdot d_i) \)[/tex]
Sum of frequencies [tex]\( \sum f_i \)[/tex]:
[tex]\[ \sum f_i = 8 + 12 + 20 + 25 + 10 + 5 = 80 \][/tex]
Sum of products [tex]\( \sum (f_i \cdot d_i) \)[/tex]:
[tex]\[ \sum (f_i \cdot d_i) = -120 + -120 + -100 + 0 + 50 + 50 = -240 \][/tex]
### Step 7: Compute the Mean [tex]\( \bar{x} \)[/tex]
Finally, we use the Assumed Mean Formula to calculate the mean [tex]\( \bar{x} \)[/tex]:
[tex]\[ \bar{x} = A + \frac{\sum (f_i \cdot d_i)}{\sum f_i} \][/tex]
[tex]\[ \bar{x} = 67.0 + \frac{-240}{80} \][/tex]
[tex]\[ \bar{x} = 67.0 - 3 \][/tex]
[tex]\[ \bar{x} = 64.0 \][/tex]
### Conclusion:
The mean mass of the 80 items, using the Assumed Mean Method, is [tex]\( 64.0 \, \text{kg} \)[/tex].
### Step 1: Define the Given Data
Suppose we are given the following frequency distribution of masses:
| Mass Range (x) | Midpoint [tex]\( m_i \)[/tex] | Frequency [tex]\( f_i \)[/tex] |
|----------------|-----------------|--------------------|
| 50 - 54 | 52.0 | 8 |
| 55 - 59 | 57.0 | 12 |
| 60 - 64 | 62.0 | 20 |
| 65 - 69 | 67.0 | 25 |
| 70 - 74 | 72.0 | 10 |
| 75 - 79 | 77.0 | 5 |
### Step 2: Calculate the Midpoints [tex]\( m_i \)[/tex]
The midpoints have already been calculated and provided in the table above.
### Step 3: Choose an Assumed Mean (A)
Let's choose [tex]\( A \)[/tex] as the midpoint of the class with the highest frequency. Here, the class with the highest frequency is 65 - 69, and its midpoint [tex]\( m_i \)[/tex] is:
[tex]\[ A = 67.0 \][/tex]
### Step 4: Calculate the Deviations [tex]\( d_i = m_i - A \)[/tex]
Now, calculate [tex]\( d_i \)[/tex] for each class:
| Midpoint [tex]\( m_i \)[/tex] | Deviation [tex]\( d_i = m_i - 67.0 \)[/tex] |
|--------------------|----------------------------------|
| 52.0 | 52.0 - 67.0 = -15.0 |
| 57.0 | 57.0 - 67.0 = -10.0 |
| 62.0 | 62.0 - 67.0 = -5.0 |
| 67.0 | 67.0 - 0.0 |
| 72.0 | 72.0 - 67.0 = 5.0 |
| 77.0 | 77.0 - 67.0 = 10.0 |
### Step 5: Compute the Product of Frequency and Deviation [tex]\( f_i \cdot d_i \)[/tex]
Next, calculate [tex]\( f_i \cdot d_i \)[/tex] for each class:
| Frequency [tex]\( f_i \)[/tex] | Deviation [tex]\( d_i \)[/tex] | [tex]\( f_i \cdot d_i \)[/tex] |
|---------------------|---------------------|---------------------|
| 8 | -15.0 | 8 \cdot (-15.0) = -120.0 |
| 12 | -10.0 | 12 \cdot (-10.0) = -120.0 |
| 20 | -5.0 | 20 \cdot (-5.0) = -100.0 |
| 25 | 0.0 | 25 \cdot 0.0 = 0.0 |
| 10 | 5.0 | 10 \cdot 5.0 = 50.0 |
| 5 | 10.0 | 5 \cdot 10.0 = 50.0 |
### Step 6: Calculate [tex]\( \sum f_i \)[/tex] and [tex]\( \sum (f_i \cdot d_i) \)[/tex]
Sum of frequencies [tex]\( \sum f_i \)[/tex]:
[tex]\[ \sum f_i = 8 + 12 + 20 + 25 + 10 + 5 = 80 \][/tex]
Sum of products [tex]\( \sum (f_i \cdot d_i) \)[/tex]:
[tex]\[ \sum (f_i \cdot d_i) = -120 + -120 + -100 + 0 + 50 + 50 = -240 \][/tex]
### Step 7: Compute the Mean [tex]\( \bar{x} \)[/tex]
Finally, we use the Assumed Mean Formula to calculate the mean [tex]\( \bar{x} \)[/tex]:
[tex]\[ \bar{x} = A + \frac{\sum (f_i \cdot d_i)}{\sum f_i} \][/tex]
[tex]\[ \bar{x} = 67.0 + \frac{-240}{80} \][/tex]
[tex]\[ \bar{x} = 67.0 - 3 \][/tex]
[tex]\[ \bar{x} = 64.0 \][/tex]
### Conclusion:
The mean mass of the 80 items, using the Assumed Mean Method, is [tex]\( 64.0 \, \text{kg} \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.