Expand your horizons with the diverse and informative answers found on IDNLearn.com. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
To find the sum of the infinite series
[tex]\[ \frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots \][/tex]
we can observe that it alternates between terms of the form [tex]\(\frac{2}{3^n}\)[/tex] and [tex]\(\frac{3}{3^n}\)[/tex].
To simplify, we can split this into two separate geometric series:
1. Series 1: [tex]\(\frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots\)[/tex]
2. Series 2: [tex]\(\frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots\)[/tex]
### Analyzing Series 1:
Let's start with Series 1:
[tex]\[ \frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots \][/tex]
We can factor out the common factor of 2 from each term, giving:
[tex]\[ 2 \left(\frac{1}{3} + \frac{1}{3^3} + \frac{1}{3^5} + \ldots\right) \][/tex]
This is a geometric series where the first term [tex]\(a_1 = \frac{2}{3}\)[/tex] and the common ratio [tex]\(r_1 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. The sum [tex]\(S_1\)[/tex] of an infinite geometric series with first term [tex]\(a\)[/tex] and common ratio [tex]\(r\)[/tex] (where [tex]\(|r| < 1\)[/tex]) is given by:
[tex]\[ S = \frac{a}{1-r} \][/tex]
Thus, for Series 1:
[tex]\[ a_1 = \frac{2}{3}, \quad r_1 = \frac{1}{9} \][/tex]
[tex]\[ S_1 = \frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} = \frac{3}{4} = 0.75 \][/tex]
### Analyzing Series 2:
Now, let's consider Series 2:
[tex]\[ \frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots \][/tex]
Similarly, we can factor out the common factor of 3 from each term, yielding:
[tex]\[ 3 \left(\frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^6} + \ldots\right) \][/tex]
This is another geometric series where the first term [tex]\(a_2 = \frac{3}{9} = \frac{1}{3}\)[/tex] and the common ratio [tex]\(r_2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. Thus:
[tex]\[ a_2 = \frac{1}{3}, \quad r_2 = \frac{1}{9} \][/tex]
[tex]\[ S_2 = \frac{\frac{1}{3}}{1 - \frac{1}{9}} = \frac{\frac{1}{3}}{\frac{8}{9}} = \frac{1}{3} \cdot \frac{9}{8} = \frac{9}{24} = \frac{3}{8} = 0.375 \][/tex]
### Adding the Two Series:
Finally, to find the total sum of the original series, we add the sums of the two separate series:
[tex]\[ S_{\text{total}} = S_1 + S_2 = 0.75 + 0.375 = 1.125 \][/tex]
Thus, the sum of the infinite series [tex]\(\frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots\)[/tex] is
[tex]\[ \boxed{1.125} \][/tex]
[tex]\[ \frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots \][/tex]
we can observe that it alternates between terms of the form [tex]\(\frac{2}{3^n}\)[/tex] and [tex]\(\frac{3}{3^n}\)[/tex].
To simplify, we can split this into two separate geometric series:
1. Series 1: [tex]\(\frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots\)[/tex]
2. Series 2: [tex]\(\frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots\)[/tex]
### Analyzing Series 1:
Let's start with Series 1:
[tex]\[ \frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots \][/tex]
We can factor out the common factor of 2 from each term, giving:
[tex]\[ 2 \left(\frac{1}{3} + \frac{1}{3^3} + \frac{1}{3^5} + \ldots\right) \][/tex]
This is a geometric series where the first term [tex]\(a_1 = \frac{2}{3}\)[/tex] and the common ratio [tex]\(r_1 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. The sum [tex]\(S_1\)[/tex] of an infinite geometric series with first term [tex]\(a\)[/tex] and common ratio [tex]\(r\)[/tex] (where [tex]\(|r| < 1\)[/tex]) is given by:
[tex]\[ S = \frac{a}{1-r} \][/tex]
Thus, for Series 1:
[tex]\[ a_1 = \frac{2}{3}, \quad r_1 = \frac{1}{9} \][/tex]
[tex]\[ S_1 = \frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} = \frac{3}{4} = 0.75 \][/tex]
### Analyzing Series 2:
Now, let's consider Series 2:
[tex]\[ \frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots \][/tex]
Similarly, we can factor out the common factor of 3 from each term, yielding:
[tex]\[ 3 \left(\frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^6} + \ldots\right) \][/tex]
This is another geometric series where the first term [tex]\(a_2 = \frac{3}{9} = \frac{1}{3}\)[/tex] and the common ratio [tex]\(r_2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. Thus:
[tex]\[ a_2 = \frac{1}{3}, \quad r_2 = \frac{1}{9} \][/tex]
[tex]\[ S_2 = \frac{\frac{1}{3}}{1 - \frac{1}{9}} = \frac{\frac{1}{3}}{\frac{8}{9}} = \frac{1}{3} \cdot \frac{9}{8} = \frac{9}{24} = \frac{3}{8} = 0.375 \][/tex]
### Adding the Two Series:
Finally, to find the total sum of the original series, we add the sums of the two separate series:
[tex]\[ S_{\text{total}} = S_1 + S_2 = 0.75 + 0.375 = 1.125 \][/tex]
Thus, the sum of the infinite series [tex]\(\frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots\)[/tex] is
[tex]\[ \boxed{1.125} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.