Discover new information and get your questions answered with IDNLearn.com. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
To prove that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal given the condition [tex]\(|\vec{a} - 3 \vec{b}| = |\vec{a} + 3 \vec{b}|\)[/tex], we can follow these steps:
1. Square both sides of the equation:
Given:
[tex]\[ |\vec{a} - 3 \vec{b}| = |\vec{a} + 3 \vec{b}| \][/tex]
Squaring both sides to eliminate the absolute value:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) \][/tex]
2. Expand both sides using the dot product property:
For the left side:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = \vec{a} \cdot \vec{a} - 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
For the right side:
[tex]\[ (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) = \vec{a} \cdot \vec{a} + 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
3. Set the expanded expressions equal and cancel common terms:
Equate the two expanded sides:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) = \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
Simplifying the equation by cancelling out the common terms [tex]\(\vec{a} \cdot \vec{a}\)[/tex] and [tex]\(9 (\vec{b} \cdot \vec{b})\)[/tex] on both sides:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) \][/tex]
4. Solve for the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex]:
Add [tex]\(6 (\vec{a} \cdot \vec{b})\)[/tex] to both sides to isolate 0:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) \][/tex]
Simplifies to:
[tex]\[ 0 = 12 (\vec{a} \cdot \vec{b}) \][/tex]
Thus:
[tex]\[ \vec{a} \cdot \vec{b} = 0 \][/tex]
5. Conclusion:
The dot product [tex]\(\vec{a} \cdot \vec{b} = 0\)[/tex] implies that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal vectors.
Therefore, we have proven that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal.
1. Square both sides of the equation:
Given:
[tex]\[ |\vec{a} - 3 \vec{b}| = |\vec{a} + 3 \vec{b}| \][/tex]
Squaring both sides to eliminate the absolute value:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) \][/tex]
2. Expand both sides using the dot product property:
For the left side:
[tex]\[ (\vec{a} - 3 \vec{b}) \cdot (\vec{a} - 3 \vec{b}) = \vec{a} \cdot \vec{a} - 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
For the right side:
[tex]\[ (\vec{a} + 3 \vec{b}) \cdot (\vec{a} + 3 \vec{b}) = \vec{a} \cdot \vec{a} + 2 (\vec{a} \cdot 3 \vec{b}) + (3 \vec{b}) \cdot (3 \vec{b}) \][/tex]
Simplifying further:
[tex]\[ \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
3. Set the expanded expressions equal and cancel common terms:
Equate the two expanded sides:
[tex]\[ \vec{a} \cdot \vec{a} - 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) = \vec{a} \cdot \vec{a} + 6 (\vec{a} \cdot \vec{b}) + 9 (\vec{b} \cdot \vec{b}) \][/tex]
Simplifying the equation by cancelling out the common terms [tex]\(\vec{a} \cdot \vec{a}\)[/tex] and [tex]\(9 (\vec{b} \cdot \vec{b})\)[/tex] on both sides:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) \][/tex]
4. Solve for the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex]:
Add [tex]\(6 (\vec{a} \cdot \vec{b})\)[/tex] to both sides to isolate 0:
[tex]\[ -6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) = 6 (\vec{a} \cdot \vec{b}) + 6 (\vec{a} \cdot \vec{b}) \][/tex]
Simplifies to:
[tex]\[ 0 = 12 (\vec{a} \cdot \vec{b}) \][/tex]
Thus:
[tex]\[ \vec{a} \cdot \vec{b} = 0 \][/tex]
5. Conclusion:
The dot product [tex]\(\vec{a} \cdot \vec{b} = 0\)[/tex] implies that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal vectors.
Therefore, we have proven that [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] are orthogonal.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.